
Everything You Always Wanted

to Know About Your Process, But

Did Not Know How To Ask
Eduardo González López de Murillas

Hajo Reijers

Wil van der Aalst

International Workshop on Process Querying 2016

September 19th, 2016

Rio de Janeiro, Brazil

PQ'16 - 2016-09-19 2

PQ'16 - 2016-09-19 3

Making sense out of the big mess

PQ'16 - 2016-09-19 4

“

 ”

 Can we actually “know” the

universe? My God, it’s hard

enough finding your way

around in Chinatown.

We need to find the needle in the

haystack

PQ'16 - 2016-09-19 5

Look in the right place

PQ'16 - 2016-09-19 6

Querying can help us

Simple example

OFFICE CUSTOMER

office_id id

status location

Customers for which the status value has

changed from Silver to Gold membership,

and are linked to an office located in

Madrid.

id

PQ'16 - 2016-09-19 7

SELECT OBJCust.id

 FROM object as OBJCust,

 class as CCust,

 class as COff,

 version as OBJVSilver,

 version as OBJVGold,

 version as OBJVMadrid,

 attribute_value as ATVStatusSilver,

 attribute_value as ATVStatusGold,

 attribute_name as ATStatus,

 attribute_value as ATVLocation,

 attribute_name as ATLocation,

 object as OBJOff,

 class as COff,

 version as OBJVOff,

 attribute_value as ATVLocation,

 attribute_name as ATLocation,

 relation as REL

WHERE OBJCust.class_id == CCust.id

 AND CCust.id == ATStatus.class_id

 AND ATStatus.name == "status"

 AND ATVStatusGold.object_version_id == OBJVGold.id

 AND ATVStatusSilver.object_version_id == OBJVSilver.id

 AND ATStatus.id == ATVStatusGold.attribute_name_id

 AND ATStatus.id == ATVStatusSilver.attribute_name_id

 AND ATVStatusGold.value == "Gold"

 AND ATVStatusSilver.value == "Silver"

 AND OBJVGold.object_id == OBJCust.id

 AND OBJVSilver.object_id == OBJCust.id

 AND OBJVGold.start_timestamp >= OBJVSilver.end_timestamp

 AND COff.name == "OFFICE"

 AND OBJOff.class_id == COff.id

 AND OBJVOff.object_id == OBJOff.id

 AND ATLocation.name == "Location"

 AND ATLocation.class_id == COff.id

 AND ATVLocation.attribute_name_id == ATLocation.id

 AND ATVLocation.object_version_id == OBJVOff.id

 AND (REL.source_object_version_id == OBJVOff OR

REL.target_object_version_id == OBJVOff)

 AND (REL.source_object_version_id == OBJVSilver OR

REL.source_object_version_id == OBJVGold)

 AND (REL.target_object_version_id == OBJVSilver OR

REL.target_object_version_id == OBJVGold)

Using SQL on the underlying Meta Model

PQ'16 - 2016-09-19 8

In DAPOQ-Lang

objectsOf(

 versionsRelatedTo(

 versionsOf(

 allClasses where name == "OFFICE"

) where at.Location == "Madrid"

) where at.status changed from "Silver" to "Gold"

)

PQ'16 - 2016-09-19 9

Customers for which the status value has

changed from Silver to Gold membership,

and are linked to an office located in

Madrid.

Main Trends on Querying Execution Data

• Data Provenance Oriented

• Origin or source of data

• Business Process Oriented

• Event data

• Process models

PQ'16 - 2016-09-19 10

What is missing?

1. Combination of data and process aspects

2. Support for database particularities

3. Integration in the analysis workflow

PQ'16 - 2016-09-19 11

Why do we need another query

language?

• SQL is to Process Querying what Assembly is to

programming.

PQ'16 - 2016-09-19 12

DAPOQ-Lang

• Data Aware Process Oriented Query Language

• Considers data and process perspectives

• State aware

• Easier to make common queries

• Possible to combine with other analysis or filtering

techniques (Integrated in the analysis workflow)

PQ'16 - 2016-09-19 13

Primitive elements

Datamodel

Class

Attribute

Relationship

Object

Version

Relation

Event

Case

Log

Activity Instance

Activity

Process

DAPOQ-Lang I

PQ'16 - 2016-09-19 14

Process

side
Data

side

DAPOQ-Lang II

Functions

datamodelsOf

Returs the set of requested elements (datamodels,

classes, attributes, etc) related to the input elements.

Input can be any of the primitive elements (and periods)

classesOf

attributesOf

relationshipsOf

objectsOf

versionsOf

relationsOf

eventsOf

casesOf

logsOf

activityInstancesOf

activitiesOf

processesOf

PQ'16 - 2016-09-19 15

DAPOQ-Lang III

Functions

versionsRelatedTo Versions related to versions

periodsOf Periods have a start and end timestamp

concurrentWith With scopes: same case, same process, same object

PQ'16 - 2016-09-19 16

Set Operations

INTERSECTION
On sets of elements of the same type: cases with

cases, versions with versions, etc.
UNION

EXCLUDING

Other constructs

Foreach On elements of a set

If Then Else Condition checks if set is empty

Filters On attributes of elements (versions, events, cases)

DAPOQ-Lang IV

PQ'16 - 2016-09-19 17

Filters

Common attributes WHERE name == “CUSTOMER”

Specific attributes WHERE at.Customer_name CONTAINS “Edu”

Versioning of values WHERE at.Address CHANGED FROM “Madrid” to

“Barcelona”

Scopes

(Only for

concurrency by now)

Select elements of same nature that share a common

link to another type:

concurrentWith(allActivities where name == “Pay”)

scope case

Can we ask anything?

PQ'16 - 2016-09-19 18

“ I don't know the question,

but sex is definitely the

answer. ”

We can express simple questions

allVersions() where { at.PRICE == "35" }

PQ'16 - 2016-09-19 19

Or complex ones

def allC = allCases().where { id < 10} ;

def results = allActivities().where { false };

def eventsN = eventsOf(allActivities().where{ name.contains("Afwijzing") });

for (Object c : allC.result) {

 def ec = eventsOf(c);

 def e = eventsN.intersection(ec);

 def pe = globalPeriod(e);

 def ebef = ec.where { before(globalPeriod(it),pe) };

 results = results.union(activitiesOf(ebef));

}

return results

PQ'16 - 2016-09-19 20

We do not need to have all the answers

• If we get closer to the truth

PQ'16 - 2016-09-19 21

We do not need to have all the answers

• If we get closer to the truth

• DAPOQ-Lang makes simple to select the relevant

portion of the data

PQ'16 - 2016-09-19 22

We do not need to have all the answers

• If we get closer to the truth

• DAPOQ-Lang makes simple to select the relevant

portion of the data

PQ'16 - 2016-09-19 23

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 24

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 25

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 26

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 27

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 28

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 29

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 30

DAPOQ-Lang in the analysis workflow

PQ'16 - 2016-09-19 31

Conclusion

• DAPOQ-Lang provides

• Simplicity

• Compactness

• Suitability

• Can be used together with SQL

• Allows to focus on the analysis

• Makes easier to query and filter information

• In the scope of Business Process Execution Data

• Integrated in a bigger tool:

• One more element in the analysis workflow

PQ'16 - 2016-09-19 32

Future work

• The function collection is not complete

• Evaluation with users to asses usefulness

• Incorporate new constructs to simplify analysis

• Improve performance

• Include more operators in RapidProM to interact with

other analysis tools

PQ'16 - 2016-09-19 33

Questions

PQ'16 - 2016-09-19 34

