
From Complexity to Insight:

Querying Large Business Process Models to Improve Quality

Kurt E. Madsen

MetaTech, Inc., Tampa, Florida, USA
kmadsen@metatech.us

Abstract. This industry case study presents process querying in automotive
manufacturing using a portal to navigate query results in the broader context of
enterprise architecture. The approach addresses the problem of helping stake-
holders (e.g., management, marketing, engineering, operations, and finance)
understand complex BPM models. Stakeholders approach BPM models from
different viewpoints and seek different views. Gleaning insight into improving
model quality is challenging when BPM models are large and complex. The fo-
cus was on process models only, not process execution, because many legacy
organizations have done initial BPM modeling but do not have BPM systems in
production or have yet to realize the benefits of coupling log mining with in-
cremental model refinement. The use case presented addresses the complexity
of multi-year, process models used by ~10,000 workers globally to develop new
vehicles. These models were queried to find quality issues, isolate stakeholder
data flows, and migrate BPMN [1] activities to cloud-based, micro-services.
This approach creates filtered process views, which serve as starting points for
stakeholders to navigate interconnected models within TOGAF [2], enterprise
architecture models. This approach — to query, manipulate, and transform pro-
cess models — was also applied to other enterprise models. Lessons learned
from introducing BPM into a legacy organization, model refinement, limitations
of research, and open problems are summarized.

Keywords: Process querying, business process management, business intelli-
gence, process compliance, and process standardization.

1 Introduction

This paper and companion workshop artifacts examine the question of how to query,
filter (i.e., manipulate), and transform large, complex process models to gain insight
into improving model quality. The focus is on process models only; process execution
and log mining are out of scope, as many of the world’s largest organizations have
fragmented process management efforts, in various stages of maturity, scattered
across disconnected departments. There is value in applying process querying to busi-
ness process models without considering downstream process execution.

2

The query method presented was tested on enterprise architecture models in auto-
motive manufacturing. The development lifecycle for new vehicles – from initial-
marketing-concepts through to ready-for-mass-production – spans years. At any given
time, there are dozens of concurrent vehicle programs globally. The lifecycle was
modeled as one process with variants by program scale and vehicle model. The pro-
cess models shared 700+ different activity types (both sub-processes and tasks), in-
stantiated as 4,000+ activity instances, interconnected via 7,000+ workflows, per-
formed by 10,000+ process workers, assuming 26 roles.

Modeling was performed in OpenText ProVision [3], a commercial, enterprise ar-
chitecture modeling tool. ProVision integrates with Excel, providing rapid model
creation and manipulation using tabular data. The process querying lifecycle involves
three steps, model inquiry, manipulation, and update. Model inquiry involves search-
ing process XML data to focus on key process areas, generally to improve model
quality. Model manipulation alters the process model XML using Xquery, XSL, and
Excel macros. Model update applies the changes so that ProVision renders revised
process model to highlight the query results.

Prior to establishing a BPM practice, the product development lifecycle was
planned as a Gantt-style program schedule in Microsoft Project with occasional ef-
forts to model processes in Visio. Neither Project nor Visio adequately met process
modeling needs, as model size and complexity were overwhelming. Still, company-
wide resistance to BPM was entrenched. Stakeholders needed a way to move from
complexity to insight to meet the core requirement of improving process model quali-
ty. The solution came in the form of process queries that filter out the details to focus
attention on problems and opportunities within process models. Once its value was
established, demand for BPM increased.

This paper is structured as follows. Section 2 states the problem being addressed,
namely the challenges of understanding, analyzing, and improving large, complex
manufacturing processes when the subject matter experts responsible for authoring the
process definitions approach them from different perspectives. Section 3 describes our
method for querying these process models (i.e., model inquiry, manipulation, and
update) to generate filtered process views from multiple perspectives that focus atten-
tion on opportunities for improvement. Section 4 presents results and extensions of
work into related areas. Section 5 summarizes limitations, open problems, and lessons
learned before section 6 concludes.

The companion workshop will provide participants with code examples and start at
building an open-source, community repository of tools and methods to solve similar
process query problems.

2 The Problem: Large, Complex Process Models

The automotive product development pipeline (from marketing concept to ready-for-
mass-manufacturing) takes years. In this case, the entire process spanned 50+ process
maps, each displaying at least 70 activities. These maps were unwieldy, difficult to
read, with too much unfiltered, detailed information. Printed and taped across the

3

walls of a large room, each 1x2 meter map displayed a degree of complexity such that
even with a magnifying glass, workflows were impossible to follow. (see Fig. 1).

2.1 Differing Stakeholder Perspectives

Stakeholders, particularly the authors who were responsible for process design, ap-
proached models from different viewpoints (e.g., management, engineering, purchas-
ing). From these viewpoints, they searched for different views (e.g., value streams,
program schedules, workflow simulations, functional, business information, applica-
tions & services). The combination of viewpoints and views establishes search per-
spectives. The demand for rendering model views was challenging due to differences
in stakeholder needs.

Fig. 1. Complex process maps, before query and filtering.

2.2 Quality Issues

The BPM models were created by aggregating program management data from dif-
ferent teams using MSProject, Visio, and custom, in-house applications. Once collect-
ed, data was loaded into Excel and split across object tables (e.g., BPM activities) and
link tables (e.g., BPM workflows to interconnect activities). The resulting Excel file
was imported into ProVision’s inventory of modeling objects and links between ob-
jects. This approach to BPM models was faster than creating them by hand, but there
were quality issues with the input data that led to model inconsistencies, including:

• Graph completeness problems [4]: missing inputs, missing outputs

4

• Temporal problems [5]: inputs available after activity start, outputs produced too
late, missing duration

• Attribute quality problems: missing author/resources/commodities, typing errors in
description.

3 Querying Business Processes

Process queries helped stakeholders to navigate interconnected models and to discov-
er model improvement opportunities. For example,

• Given an author, find all of his/her activities within a workflow model.
• Given an artifact, find all activity usages (i.e., instantiations of an activity).
• Given a milestone, find the distinct list of artifacts that cross swim lane boundaries.
• Given a milestone, find the distinct set of artifacts that are associated with work-

flows that cross swim lane boundaries. (e.g., BOM information handed off from
one team to another).

• Given a role, highlight all activities performed by that role (e.g., marketing).
• Given a parameter, find model objects a matching attribute (e.g., find activities).
• Quality query: given a process model, verify that there are no workflows with one

end detached (i.e., no dangling workflows).
• Quality query: given a process model, assert (number of activities where author is

NOT missing = total number of activities).
• Compliance query: given a process model, compare it to the APQC reference mod-

el for automotive manufacturing to assess standards compliance [6].
• Navigation queries. Use query results as input to the next query. Repeat to navigate

within and across models. For example, given an author, find all of his/her activi-
ties. Then, for each activity, trace all input workflows to find only those upstream
activities owned by a different author. In this way, two authors could coordinate
their teams' planned work in the process.

3.1 Model Inquiry

Process data conformed to ProVision’s common interchange format (CIF.xsd), an
XML schema supporting model portability across vendor platforms. (Fig. 2).

01 <activity id="157896" name="CAD-849">

02 <descr>Build prototype car parts</descr>

03 <parent refID="435524"/>

04 <workTime></workTime>

05 <performer refID="467908"/>

06 <customProperties>

07 <property name="Author">

08 <value>John Doe</value>

09 </property>

10 </customProperties>

5

11 </activity>

Fig. 2. An XML fragment of a process activity

On lines 7 – 9 of this XML fragment, the stakeholder responsible for this activity is
stored in the author custom property, an important query search key. On line 1, the
activity id "157896” is referenced throughout the process model to refer back to this
activity (e.g., to connect it to workflows). These reference ids chained together to
enable navigation queries and nested searches and were invoked repeatedly as users
traversed workflows. Note that missing data on line 4, an example of poor quality
input data, hindered queries such as finding critical paths to reduce time-to-market.

Consider the query in Fig. 3: given an author, find all of her activities.

01 declare variable $author:="John Doe";

02 for $activity in /process/activities/activity

03 let $activity-id := $activity/@id

04 where $activity/customProperties/property

05 [@name="Author"]/value[matches(., $author)]

06 return <member refID="{$activity-id}" />

Fig. 3. Xquery to return a collection of all activities owned by $author

When this query runs, the result is a set of zero or more <member> elements as shown
on lines 3-5 in Fig. 4. The set <members> in <modelScenario> includes only those
activities owned by $author.

01 <modelScenario name=”Process layer, author filter”>

02 <members>

03 <member refID="157896"/>

04 <member refID="…etc…"/>

05 …etc…

06 </members>

07 </modelScenario>

Fig. 4. Xquery result set with references to all activities owned by $author = “John Doe”

ProVision uses the <modelScenario> element to manage process simulation scenari-
os. We discovered that this element can be overloaded to create a collection of model
layers, which, when superimposed on each other, filter out irrelevant process details
to focus attention on query results.

3.2 Model Manipulation

This stage of the querying life cycle alters XML in a process model. For instance:

• Given query results, insert rows into a new process model layer
• Given task duration data, populate the work time for each activity

6

• Given inter-activity timing data, populate transit time for each Workflow

This stage was challenging because most of this work was performed manually by
editing boilerplate process files and inserting query results. Note that the process defi-
nition files were often over 100GB in size.

3.3 Model Update

Updating a model involved uploading a manipulated model definition into ProVision.
In some cases, post-processing was applied to color workflows using Javascript,
which had the effect of highlighting workflows to draw attention to gaps, overlaps,
and errors. See Fig. 5.

function highlightWorkflowsByStereotype(model) {

 var bpmParts = model.getComponents();

 for (i = 0; i < bpmParts.length; i++) {

 if (bpmParts[i].getType() == "Workflow") {

 var nextStereotype = bpmParts[i].getStereotype();

 if (nextStereotype == "WfOverlap")

 bpmParts[i].Line.setColor(ORANGE);

 if (nextStereotype == "WfGap")

 bpmParts[i].Line.setColor(GREEN);

 if (nextStereotype == "WfError")

 bpmParts[i].Line.setColor(RED); }}}

Fig. 5. Javascript to highlight process model elements during model update

When the collection of activities owned by a given author was combined with color
highlighting of the workflows by stereotype, the resulting filtered process layer over-
layed the ghosted process layer and was rendered as shown in Fig. 6.

7

Fig. 6. Filtered workflow map with query results highlighted for visibility.

4 Results and Extensions of Work

This process querying work helped a multi-disciplinary team realize a significant,
undisclosed reduction in time-to-market for a multi-year manufacturing process, while
improving overall model quality. Further, BPM gained acceptance among skeptics
within the organization. Accordingly, the success of this work expanded beyond the
original scope of improving BPM model quality.

4.1 Queries Applied to Other Enterprise Models

TOGAF, as it was used, specified seven types of enterprise models: strategy, organi-
zation, capability, process, information, application, and technology. This approach to
querying process models was equally useful when applied to querying other enterprise
models. Examples follow:

• An executive might start with a process model, and then search for the TOGAF
business capability it implemented, and in turn, navigate to the associated TOGAF
value stream.

• An enterprise architect might start with a process model, navigate to the infor-
mation model it required, and then navigate to the application models that pro-
duced the information required by the process.

• A process author, assuming the role of purchasing manager, might start by search-
ing an activity within the purchasing swim lane, then navigate upstream to work
performed within other swim lanes (such as marketing or engineering). S/he could
examine the attached artifacts (e.g., inputs such as marketing features or CAD da-

8

ta), and then create a new sub-process activity to handle bottlenecks (e.g., if substi-
tute parts had become necessary due to supplier issues).

4.2 Enterprise Architecture Portal

Process models were part of a broader collection of model portfolios, collectively
containing over 800,000 model objects and covering all aspects of the company. The
approached to process querying also applied to other model types within the TOGAF
framework. An enterprise architecture portal was built so stakeholders could query all
models types and navigate interconnected, filtered model views. This was done by
selecting a model portfolio (e.g., vehicle design) and then selecting from configurable
filters (e.g., filter by process map stage and organization perspective) as shown in
Fig. 7.

Fig. 7. Portal for Exploring TOGAF Enterprise Models Which Included Process Models.

Model metadata drove the portal’s content with support for multiple portfolios of
models (e.g., one portfolio for trucks and another for cars, or one for North American
operations and another for Asia.). This is useful when comparing two sets of models,
each from different authoring tools. See Fig. 8.

01 <PortfolioListing name="GlobalProdDev">

02 <Notebook name="DesignStage" vers=”” DtTm=””>

03 <AuthoringTool company="OpenText"

9

04 product="ProVision" release="9.2"/>

05 <Models>

06 <Model Filter-01=“CAD1"

 Filter-02=“Integration"

07 Filter-03="activity.05">

08 <Title> CAD design process</Title>

09 <Description>This model contains …</Description>

10 <URL>model_image.htm</URL>

11 </Model>

12 </Models>

13 </Notebook>

14 </PortfolioListing>

Fig. 8. XML data to populate model entries in enterprise architecture portal

4.3 Querying Workflows and Artifacts to Discover Micro-Services

A firm-wide effort existed to replace legacy information systems with cloud-based,
micro-services. Part of this work involved identifying workflows where process par-
ticipants used email to hand off information across swim lane boundaries, a practice
which led to document management issues and rework. Combining these workflows
with the list of end-of-life systems provided a short-list of migration-eligible systems.

An example is the activity “PR-849 Purchase Parts” in the purchasing swim lane of
Fig. 6. Such activities were identified by exporting process models to Excel and
searching the descriptions of system, workflow, artifact, and activity objects via regu-
lar expressions to find target data (e.g., parts data, CAD files, etc.). While this
worked, a better approach would have been to use a process query language [7], [8]
with a search query along the lines of the following SQL-like pseudo code:

SELECT id FROM workflows AS w WHERE crossesSwimlaneBound-

ary(w.id) = true AND w.id IN (SELECT id FROM workflows AS

w WHERE w.endLink.refId IN (SELECT id FROM activities AS

a WHERE has_artifact(a.id) = true AND regExp(a.id,

partsDataPattern) = true))

Ideally, such a PQL statement would be able to invoke regular expression searches
(e.g., “[part|BOM].*data”) of artifacts outside the process model being searched in a
manner similar to Transact-SQL’s xp_cmdshell() [9], but without security issues.

The end goal is an inventory of service-ready activities (SrActivities). In ProVi-
sion, when a process modeller drags an SrActivity onto the process designer canvas,
the tool validates and instantiates the web services interface to the correct micro-
service. A proof-of-concept was produced in ProVision using the Excel approach.
SrActivites were inventoried separately from non-service-ready activities, so it was
possible to measure progress towards migrating activity inputs from legacy infor-
mation systems and external MS Office documents (passed by email) to micro-
services.

10

4.4 Filters to Normalize Models for Vendor-Neutrality

As a best practice, vendor neutrality requires enterprise model artifacts be portable
across modeling tools. Unfortunately, model fidelity is sometimes lost when exporting
/importing models between tools (e.g., using BPMN or XPDL). A repository of ren-
dered model views in both PDF and HTML formats was created. Process queries
filtered out ProVision branding aggregating models published by all vendors (e.g.,
Activiti, Sparks Enterprise Architect). Thus, stakeholders could focus on enterprise
models independently of the tools used to produce them. The modeling lifecycle and
modeling-tool vendor management lifecycle could evolve independently.

5 Conclusion

This work focused on process querying as it relates to BPM models only, not the min-
ing of process logs, because the organization was not yet ready for log mining. Even
with this limitation, there was still much value in applying process querying to mod-
els.

5.1 What Worked Well; What Did Not

The most useful query was finding timing gaps (i.e., leads), overlaps (i.e., lags), and
errors in workflows between activities. A gap exists when an upstream activity finish-
es one or more weeks before a downstream activity starts. An overlap exists when
both activities execute concurrently for one or more weeks. A workflow error exists
when the downstream activity starts before the upstream activity starts, or when one
end of a workflow is unattached to a process element (activity, start, end, or gateway).
Reducing time-to-market involved iteratively refining process models to close gaps,
maximize overlaps, and eliminate errors.

Process models were planned backwards so the first activity (Design vehicle con-
cept) had negative start and finish times, and the last activity (Confirm ready-to-
manufacture) had a finish time of 0. Thus, given two activities Ai [Si, Fi] and Aj [Sj,
Fj], a Gap exists when Sj < Fi an Overlap exists when Si ≥ Sj > Fi, and an Error exists
when Sj > Si, where A = Activity, S = Start, F = Finish, and Aj depends on input from
Ai.

ProVision version 9.2 has a defect when importing model data from Excel: it does
not load the activity.workTime column into the process model’s activities, which
blocks critical path analysis. To circumvent this problem, workflows between activi-
ties where inventoried in Excel with one row per workflow, sorted by activi-
ty.workTime to prioritize leads, lags, and errors between adjacent process activities.
With this prioritized list in hand, filtered views of process maps were created to high-
light timing problems.

Regarding performance, the models exported by ProVision in its common inter-
change XML format were big, often over 100MB. Loading them into OxygenXML
Designer and ProVision led to non-linear processing delays (and occasional crashes),

11

which seemed to grow exponentially with file size as the model was loaded into
memory. In XML processing, streaming has better performance than loading large
DOMs. [10] This is a consideration when designing process query languages and PQL
processors.

The manipulation stage of process querying involved labor-intensive, batch work
for developers, which proved challenging. The turn-around time to produce a filtered
process layer could be as much as 20 minutes. Using shell scripts with regular expres-
sions, experiments with XSL, and manual processing, layers were created. An area of
future work would be to automate model manipulation so that stakeholders could
execute ad-hoc PQL queries on the fly to explore and navigate models. Process mod-
eling tools would have to support a PQL-compliant API in order to dynamically ren-
der ad-hoc queries

5.2 Limitations, Open Problems, and Lessons Learned

Resources such as code samples are available on the github site [11]. Areas for future
research include:

• Improving XML processing performance ― not enough effort was spent on meas-
uring model size vs. processing time.

• PQL portability across modeling tools ― based on this experience using a specific
BPM modeling tool and meta-model, it is clear that PQL portability will be in de-
mand in industry.

• Support for ad-hoc queries and model navigation ― the enterprise portal was
popular among stakeholders. However, it was limited in its ability to render dy-
namically-generated model views on the fly in response to ad-hoc queries. Such
queries support exploration and discovery of interconnected models.

• Model design drift and compliance ― just as process instances drift during execu-
tion, so too does design intent drift when subject matter experts design and main-
tain large, complex process models over years. There was interest in archiving
model changes for corporate history and in measuring the cost of model drift [12].
A big driver is process compliance and alignment to industry standards, particular-
ly the APQC standard for automotive manufacturing processes.

References

1. Business Process Model and Notation Specification, version 2.0.2, section 7.3.1,
https://www.omg.org/spec/BPMN/2.0/, last accessed 2018/07/30

2. TOGAF version 9.2, Part IV, http://pubs.opengroup.org/architecture/togaf92-doc/arch/,
last accessed 2018/07/30

3. ProVision product data sheet,
https://www.opentext.com/file_source/OpenText/en_US/PDF/ProVision%20Enterprise%2
0and%20Product%20Architecture%20Software%20Product%20Overview%20.pdf, last
accessed 2018/07/30

12

4. Dettmer, H.W. (1997). Goldratt’s Theory of Constraints: A Systems Approach to Continu-
ous Improvement. ASQC Quality Press, Milwaukee, WI. Section: “The categories of le-
gitimate reservation.”

5. Akhil Kumar, Sharat R. Sabbella, Russell R. Barton. Managing controlled violation of
temporal process constraints. BPM 2015: 280-296

6. APQC Process Classification Framework (PCF) - Automotive (OEM) - Excel Version
7.0.5, https://www.apqc.org/knowledge-base/documents/apqc-process-classification-
framework-pcf-automotive-oem-excel-version-705, last accessed 2018/07/13

7. http://processquerying.com/pql-grammar/, last accessed 2018/08/01
8. A. Polyvyanyy, C. Ouyang, A. Barros, W. van der Aalst, “Process Querying: Enabling

Business Intelligence through Query-Based Process Analytics,” Queensland University of
Technology, Brisbane, Australia, https://doi.org/10.1016/j.dss.2017.04.011, p3

9. Transact-SQL, xp_cmdshell(), docs.microsoft.com/en-us/sql/relational-databases/system-
stored-procedures/xp-cmdshell-transact-sql, last accessed 2018/07/30

10. Zhang, Wei 2012: Efficient XML Stream Processing and Searching, Florida State Univer-
sity, http://ww2.cs.fsu.edu/~wzhang/dissertation.pdf, last accessed 2018/07/11, p1, p18-21

11. Github site for this project: https://github.com/curiouskurt/pq2018
12. Mahdi Alizadeh, Massimiliano de Leoni, and Nicola Zannone, Eindhoven University of

Technology, “History-based Construction of Log-Process Alignments for Conformance
Checking: Discovering What Really Went Wrong?”, November 19 – 21, 2014, p9

