
One Language to Rule them All:
Behavioural Querying of Process Data using SQL

Jakob Brand1, Timotheus Kampik2,3, Cem Okulmus3, and Matthias Weidlich1,2

1 Humboldt-Universität zu Berlin, Berlin, Germany,
(brandjak,matthias.weidlich)@hu-berlin.de,

2 SAP Signavio,
(timotheus.kampik,matthias.weidlich)@sap.com,

3 Umeå University, Umeå, Sweden
(tkampik,okulmus)@cs.umu.se

Abstract. State-of-the-art solutions for process mining rely on propri-
etary, domain-specific languages to query data recorded during business
process execution. To support common analysis tasks, these languages
focus on the definition of queries for behavioural patterns. Yet, the use of
domain-specific languages for process mining has drawbacks: they require
specific user training, lead to a decoupling of the query models for (i) data
extraction and transformation, and (ii) the actual analysis, and induce en-
gineering overhead through the development of a dedicated query engine.
In this work, we therefore explore the use of standard SQL for process
mining tasks. In particular, we demonstrate that the SQL concepts for
row pattern recognition as realised by the MATCH_RECOGNIZE clause are
sufficient to capture queries for behavioural patterns as specified in the
SIGNAL language by SAP Signavio as well as the Process Querying
Language (PQL) by Celonis. Based on a discussion of the respective
language features, we outline a translation of SIGNAL and PQL queries
into standard SQL. This way, we provide the basis for the adoption of
widely used, general purpose query engines for process mining tasks.

Key words: Process Querying, Process Mining, Pattern Recognition

1 Introduction

Process mining supports business process management through the analysis of
event log data that has been recorded during process execution. Over the past
decade, process mining has evolved from an academic field of inquiry into a widely
adopted practice in large-scale organisations that is supported by special-purpose
software products provided by major vendors such as Microsoft and SAP. To
support a wide range of analysis tasks, process querying has become a cornerstone
of existing process mining solutions and a vibrant direction of research within the
community [11]. Yet, the assumption so far has mostly been that process querying
is executed by special-purpose technologies, i.e., domain-specific languages that
facilitate the definition of queries for behavioural patterns [5, 15] (Section 2).

2 Jakob Brand et al.

While domain-specific languages for process querying can be tailored to
specific analysis needs, their usage also induces certain drawbacks. They require
specific training, which narrows the user group. They also lead to a decoupling
of the query models for data preparation and analysis. Since process-related
data is often stored in mainstream relational database systems, the extraction,
transformation and loading (ETL) of the data is typically realized in standard
SQL. Finally, the use of domain-specific languages for process querying incurs
engineering overhead, through the development of dedicated query engines.

In this paper, we question the need for dedicated languages for process
querying. We practically demonstrate that the behavioural querying capabilities
of two industry-scale process query languages can be mapped to standard SQL,
most notably using the MATCH_RECOGNIZE clause as introduced with the 2016
SQL standard revision (Section 3). This means that process behaviour can be
analysed using “mainstream” database systems. As such, our work strengthens
the bridge between process query languages and database theory and applications
(Section 4), while simultaneously raising questions about i) the complexity and
scalability of MATCH_RECOGNIZE for behavioural querying and ii) the potential of
ubiquitous process querying with mainstream database technologies, e.g., directly
on top of enterprise system databases and in the data lake-houses that serve as
the data backbone for a wide range of business applications (Section 5).

2 Background

Below, we give an intuitive overview of two state-of-the-art languages for process
querying, i.e., SIGNAL by SAP Signavio (Section 2.1) and PQL by Celonis
(Section 2.2). Then, we review the SQL MATCH_RECOGNIZE clause (Section 2.3).

2.1 SIGNAL by SAP Signavio

SIGNAL [5] is a language for process querying provided by SAP Signavio as part
of their process mining offering. The central data model in SIGNAL is a nested
table, as illustrated in Table 1. It contains information on process executions
on two levels. The outer level includes attributes for a case identifier (case_id
in Table 1) and additional case properties, if available (customer_name and
order_value). For each tuple of the outer level, the inner level contains tuples
that describe the individual events recorded for a case, with attributes capturing
an event type (event_name) and timestamp (end_time), and potentially
further properties of events (department).

SIGNAL supports read-only queries that are specified in an SQL-like syntax,
see Listing 1. The queries refer to a single nested table (FROM clause), which is
typically derived from the query context (THIS_PROCESS in Listing 1). A SIGNAL
query may be flat and refer only to the information at the case level in the nested
table, through standard SQL operators for projection, selection, and aggregation
(in SELECT and WHERE clauses). A query may also be nested, such that the outer

Querying of Process Data using SQL 3

Table 1. Example of the SIGNAL columnar data format for event logs.

case_ID customer_name order_value events

event_name end_time department

01 C1 599

Order received 2024-03-01 11:15 D1
Invoice sent 2024-03-01 12:33 D2

Payment received 2024-03-02 09:01 D2
Order shipped 2024-03-05 14:39 D4

02 C3 149

Order received 2024-03-02 15:25 D1
Invoice sent 2024-03-02 17:43 D2

Timer expired 2024-03-09 17:44 D3
Order cancelled 2024-03-09 18:02 D4

1 SELECT case_id
2 FROM THIS_PROCESS
3 WHERE BEHAVIOUR (event_name = ’Order received’ AND ’order_value’ > 300)
4 AS order_300
5 MATCHES (^order_300 ~> ’Payment received’ -> ’Order shipped’$)

Listing 1. Example of a SIGNAL query.

subquery refers to cases, while the inner subquery refers to events within cases.
Such a nested query may leverage the order of events within a case as it is inferred
from the events’ timestamps (which is assumed to be total) in order to detect
patterns based on temporal constraints (MATCHES clause). The events to consider
for the evaluation of the constraints are either characterized implicitly (e.g., by
referring directly to a value of the event_name column; ’Payment received’ in
Listing 1) or defined as so-called behaviours (BEHAVIOUR clause), i.e., subqueries
that select the events of a case that satisfy the specified constraints.

2.2 PQL by Celonis

PQL [15] has been developed by Celonis as a query language for process mining
tasks. Is adopts a so-called snowflake schema [15], as illustrated in Figure 1.
Here, the central relations are an Activities table and a Cases table. Additional
information is stored in further tables with a normalized schema (a Customers
table and an Orders table in our example), which is linked to the Activities table
and Cases table, respectively, by foreign key relationships. These relationships
have to be defined when loading data into the respective model.

PQL queries are read-only and also adopt an SQL-like syntax. PQL supports
a wide range of operators, from SQL-like aggregation and string modification
functions through ML operators (e.g., k-means clustering) to operators for process
mining tasks (e.g., a dedicated operator for conformance checking [2]).

In PQL queries, two important operations are performed implicitly based on
the interpretation of the aforementioned tables in a process mining context. That
is, queries over the Activities and Cases tables may refer to attributes of the
additional tables, which are then joined implicitly according to the foreign keys.
In addition, groupings are performed implicitly using all selected non-aggregated
columns in a query.

4 Jakob Brand et al.

Cases
Case Customer Order

01 183 5431
02 121 1003

Activities
Case Activity Timestamp Department

01 Order received 2024-03-01 11:15 D1
01 Invoice sent 2024-03-01 12:33 D2
01 Payment received 2024-03-02 09:01 D4
01 Order shipped 2024-03-05 14:39 D4
02 Order received 2024-03-02 15:25 D1
02 Invoice sent 2024-03-02 17:43 D2
02 Timer expired 2024-03-09 17:44 D3
02 Order cancelled 2024-03-09 18:02 D4

Customers
CustomerID Name

183 C1
121 C3

Orders
OrderID OrderAmount

5431 599
1003 149

Fig. 1. Example of the PQL snowflake data model with four tables.

PQL’s support for the identification of behavioural patterns primarily relies
on three so-called process functions that match cases showing a specific pattern
of activity executions: PROCESS EQUALS enables matching based on a reduced set
of regular expressions. Patterns in MATCH_PROCESS are defined in graph structure,
in which vertices are activities, or sets thereof, and edges describe behavioural
relations between them. The most expressive clause, MATCH_PROCESS_REGEX, defines
a pattern as a regular expression. The latter resembles the behavioural matching
in SIGNAL, so that we will focus on this clause in the remainder.

A MATCH_PROCESS_REGEX query is shown in Listing 2. At first, a single string
column of the Activities table on which the matching is performed is specified.
Then, a pattern is defined for behaviours via equality or wildcard matching, and
transitions between them. In the example, matching is performed on a behaviour
column that is constructed by the CASE. It has three sub-clauses, one for the
each of the behaviours, which define the condition (WHEN) of the behaviour as
well as its name (THEN). The latter represents the values for the behaviour
column, which are then matched via string equality. The matching clause adds a
temporary integer column to the Cases table with 0/1 values, indicating whether
a case matches the pattern. Wrapping the clause with a FILTER = 1 condition
will return all rows of all matched cases, as seen in the example.

As pattern detection is limited to a single string column, complex patterns on
multiple/non-string columns are not directly supported. However, the CASE WHEN

clause supports evaluation of arbitrary columns and can be used beforehand to
create a new string column in the Activities table, which indicates the satisfied
constraints for each row. This is illustrated in our example in Listing 2, where
the string values ‘order_300’, ‘payment_received’, and ‘order_shipped’ indicate
the fulfilment of the respective constraints.

2.3 SQL Match Recognize

With the 2016 revision of the SQL standard [7], the MATCH_RECOGNIZE clause has
been introduced for row pattern recognition. While a concise description can
be found in [10], we summarise the main concepts of MATCH_RECOGNIZE below.

Querying of Process Data using SQL 5

1 CASE WHEN "Activities"."Activity"=’Order Received’
2 AND "Activities"."OrderAmount" > 300 THEN ’order_300’
3 WHEN "Activities"."Activity"=’Payment Received’ THEN ’payment_received’
4 WHEN "Activities"."Activity"=’Order shipped’ THEN ’order_shipped’
5 ELSE ’’
6 END

7 FILTER MATCH_PROCESS_REGEX("Activities"."behaviour", ^’order_300’ >>
8 ANY* >> ’payment_received’ >> ’order_shipped’$) = 1;

Listing 2. Example of a PQL query.

Listing 3 illustrates the syntax for the MATCH_RECOGNIZE clause. It operates on
an input table, as constructed by the FROM clause, which may involve joins, and
produces an output table, which is then processed by SELECT and other clauses
(e.g., a GROUP BY clause). The MATCH_RECOGNIZE clause involves several operators:

DEFINE: This operator is mandatory and is used to define pattern symbols, which
are—seen semantically—matched to a set of rows that satisfy some condition.
These symbols may even refer to other symbols in their definition.

PATTERN. This operator is mandatory and comprises a regular expression, which
may use symbols defined in DEFINE. Notably, it is allowed to include undefined
symbols, which are given a dummy predicate that is satisfied by all rows. The
regular expressions may include Kleene closure (∗ and +), upper and lower
cardinality bounds ({n,m}), alternatives (+), and references to the first and
last row of a table (ˆand $).

ONE ROW PER MATCH / ALL ROWS PER MATCH. Upon a “match”, understood as the
sequence of rows which satisfies the pattern, the content of the output table
is derived as follows: ONE ROW PER MATCH produces one output row for every
match, i.e., provides a certain aggregation. ALL ROWS PER MATCH performs no
such aggregation, and outputs each row in the sequence making up a match.

AFTER MATCH. This optional operator controls, upon a “match”, where to continue
pattern matching, e.g., after the first or last row (in general, or representing
a specific symbol).

PARTITION BY. This optional operator groups the rows of the table given a list
of columns. The MATCH_RECOGNIZE clause is then evaluated per such group.

ORDER BY. While the ordering operator is optional, it carries the same meaning
as when used outside a MATCH_RECOGNIZE clause.

MEASURES. This optional operator enables access to pre-defined internal func-
tions to populate the output with additional columns, accessible outside the
MATCH_RECOGNIZE clause, such as match_number() and first().

SUBSET. This optional operator, given a list of pattern symbols, groups them to
refer to them collectively (e.g., to compute aggregates).

The MATCH_RECOGNIZE clause is available in various database management sys-
tems, such as Oracle, Snowflake, and Trino, as well as data stream processing
frameworks, such as Azure Stream Analytics, Flink, and Esper.

6 Jakob Brand et al.

1 SELECT <select list>
2 FROM <source table>
3 MATCH_RECOGNIZE (
4 [PARTITION BY <partition list>]
5 [ORDER BY <order by list>]
6 [MEASURES <measure list>]
7 [ONE ROW PER MATCH | ALL ROWS PER MATCH]
8 [AFTER MATCH <skip to option>]
9 PATTERN (<row pattern>)

10 [SUBSET <subset list>]
11 DEFINE <definition list>) AS <table alias>;

Listing 3. The syntax of the MATCH_RECOGNIZE clause, as given in [10].

3 Language Comparison and Translation

In this section, we compare the above languages, and outline how SIGNAL and
PQL queries can be translated to SQL using the MATCH_RECOGNIZE clause.

3.1 Query Input

The input data for process querying is saved either as a nested table (in SIGNAL)
or in a pre-defined schema comprising an Activities table, a Cases table and
optional additional dimensions (in PQL). In SIGNAL, specifying a process
identifier as input in the FROM subclause is sufficient. In PQL, the Activities
table is specified to identify the input data. When referencing data from the
dimension tables in PQL, the necessary joins are performed implicitly.

In SQL, the FROM subclause specifies the tables or views based on which
the table for the evaluation of the MATCH_RECOGNIZE clause is derived. The
construction of this table follows common SQL semantics. That is, a listing of
multiple tables leads to the (implicit) construction of a Cartesian product, which
may be avoided by specifying explicit joins or subqueries.

When translating SIGNAL and PQL queries to SQL, therefore, all tables that
capture relevant process data need to be included in the FROM clause, potentially
joining them over the attributes for the activity or case identifiers.

3.2 Behaviour Definition

Process querying concerns the identification of patterns over some behavioural
abstraction. Using the terminology of SIGNAL, we call these abstractions be-
haviours. A behaviour is defined by a Boolean condition that is evaluated against
each event of the process data, i.e., against each row of a respective table.

Patterns are then constructed by specifying relations over behaviours, incor-
porating the ordering of rows as established by timestamp attributes. As detailed
later, a pattern resembles a regular expression (regex), i.e., the behaviours can
be seen as the alphabet over which to define the regex.

Querying of Process Data using SQL 7

To differentiate the expressiveness of behaviours, we adopt the classification
of conditions as presented for MATCH_RECOGNIZE in [16]: if a condition can be
evaluated on a single row, it is called an independent condition. For behaviours
that need to be evaluated across multiple rows, the condition is called a dependent
condition. If all rows that need to be evaluated in a dependent condition are
located in the same pattern match, the condition is classified as self-contained.

SIGNAL Behaviours can be defined implicitly with a string that is matched with a
specified column (by default the event_name column). For an explicit definition,
a WHERE BEHAVIOUR clause is part of the language. It supports a wide range of
operators, such as comparison, logical, LIKE/ILIKE, IS NULL, and durations on
event-level columns from the table. In the SIGNAL query in Listing 1, the
first behaviour order_300 is defined explicitly and matches all rows with the
event_name ‘Order received’ and an order_value larger than 300. The second
and third behaviours are implicitly defined in the MATCHES subclause.

Queries that include BEHAVIOUR and MATCHES clauses are restricted to nested
tables. Therefore, the BEHAVIOUR clause operates at the inner (i.e., event) level,
and comparisons to case-level aggregations like SUM or AVG are not possible. While
the SIGNAL language includes LAG/LEAD operators to navigate to previous and
subsequent rows in a match, they are defined as window functions that work on
flattened tables and, therefore, are not applicable for row navigation in nested
tables. Hence, behaviours in SIGNAL contain only independent conditions.

PQL To define behaviours, a user may specify a single string column (by default
the activity column) for matching it against a set of given strings. In addition,
string matching may incorporate LIKE with wildcards and grouped matching.

While such behaviour definition based on string matching offers only limited
expressiveness, more complex behaviours may be derived using some limited data
manipulation capabilities in PQL. That is, the CASE_WHEN operator enables the
creation of a temporary table based on the Activities table that features an
additional string column behaviour. The latter indicates the satisfied behaviour
for each row and can be incorporated in the matching operator, as discussed
already for the example given in Listing 2.

In a CASE clause, multiple conditions on columns and corresponding output
values (i.e., behaviour names) can be specified. The conditions are evaluated on
each row individually and may include comparisons, logical operators, LIKE/ILIKE,
IS NULL and BETWEEN for time intervals; they may refer to neighbouring rows using
LAG/LEAD; and they can include aggregations. Note that aggregates are by default
applied to groups of all non-aggregated columns and, hence, computed at least
on case groups. Row navigation with LAG/LEAD, in turn, operates on the whole
table by default, so that a condition for a row can refer to rows from other cases.
In pattern matching, this means that a behaviour can include dependent, not self-
contained conditions. By using row navigation with a PARTITION BY clause on the
case-id (or, equivalently for case partitioning, ACTIVITY_LAG/ACTIVITY_LEAD),
one can ensure self-contained, dependent conditions. If neither aggregates nor
row navigation is used, the behaviour conditions are always independent.

8 Jakob Brand et al.

1 SELECT case_id
2 FROM events
3 MATCH_RECOGNIZE (
4 PARTITION BY case_id
5 ORDER BY end_time
6 ONE ROW PER MATCH

7 PATTERN (^order_300 ANY* payment_received order_shipped$)
8 DEFINE order_300 AS event_name = ’Order received’ AND order_value > 300,
9 payment_received AS event_name = ’Payment received’,

10 order_shipped AS event_name = ’Order shipped’)

Listing 4. Example of an SQL query with MATCH_RECOGNIZE.

However, when using a CASE clause for behaviour definition, each row is
assigned exactly one behaviour. To work around this limitation, one would need
to leverage the string processing capabilities of PQL. That is, for each row, each
behaviour is evaluated with a separate CASE clause and the resulting string values
are concatenated (CONCAT or short ||) in the behaviour column. In the pattern
matching, the presence of a behaviour in this string is assessed using the LIKE
operator, which we illustrate with the query in Listing 5 that is discussed later.

MATCH_RECOGNIZE In the MATCH_RECOGNIZE clause, behaviours are constructed
in the DEFINE clause that includes a name followed by (AS) by the respective
conditions. An example is given in Listing 4, where the behaviours order_300,
payment_received, and order_shipped are defined. The conditions may
include comparisons, logical operators, LIKE/ILIKE, IS NULL; they may refer to
aggregates, and neighbouring rows PREVIOUS/NEXT. Therefore, depending on the
partitioning of aggregates and row navigation functions, such a query can contain
either not self-contained or self-contained conditions. Only if aggregates and row
navigation are not used, the behaviour conditions are independent.

By default, undefined behaviours assign the value TRUE to any row. However, a
placeholder behaviour that matches any row can also be modelled more explicitly
using ANY, which we use in our examples.

Turning to the translation of SIGNAL queries to SQL, the behaviours defined
in a WHERE BEHAVIOUR clause and in a MATCHES clause, need to be specified in
the DEFINE clause of MATCH_RECOGNIZE (as illustrated for the exemplary queries
in Listing 1 and Listing 4). The same translation needs to be applied for the
behaviours defined in PQL queries as part of one or more CASE clauses (see
Listing 2 and Listing 4). If MATCH_PROCESS_REGEX is used without CASE clauses,
each behaviour in the PQL pattern is translated into an SQL behaviour using
string equality or LIKE/ILIKE operators on the respective column.

We conclude that the definition of behaviours as realised in SIGNAL and
PQL can be mapped to MATCH_RECOGNIZE.

Querying of Process Data using SQL 9

Table 2. Operators for the definition of a pattern.

Operator Semantics (a, b ∈ E, a ̸= b) SIGNAL PQL SQL

Directly follows a ≻ b, ∄ c ∈ E \ {a, b}[a ≻ c ∧ c ≻ b] a -> b a ≫ b a b
Follows a ≻ b a ~> b a ≫ (ANY)* ≫ b a (ANY)* b

Starts with ∀ c ∈ E \ {a} : a ≻ c ^a ^a ^a
Ends with ∀ c ∈ E \ {a} : c ≻ a a$ a$ a$

Contains any ∃ c ∈ E : a ≻ c, c ≻ b a ANY b a ≫ ANY ≫ b a ANY b
Does not contain ∄ c ∈ E NOT c [!c] ⧸

Alternation a ∨ b a | b a | b a | b

Repetition (≥ 0)
⋃∞

i=0 ai a* a* a*
Repetition (≥ 1)

⋃∞
i=1 ai a+ † a+ a+

0 - 1 occurrences a ∨ ϵ a? † a? a?
x - y occurrences

⋃y
i=x ai a{x, y} † a{x, y} a{x, y}

One from set a ∨ b ∨ c with c ∈ E \ {a, b} (a | (b | c)) [a,b,c] (a | (b | c))
† The operators are available in SIGNAL, but not yet described in the public documentation.

3.3 Pattern Definition

In SIGNAL and PQL (using the MATCH_PROCESS_REGEX clause), patterns are
matched per case, considering the order of events as inferred from their timestamps.
These notions of events and cases need to be translated to SQL using the
PARTITION BY clause, to group rows of the input table by the attribute denoting
the case identifier, and the ORDER BY clause, to order events by timestamps.

To define a pattern, all languages offer operators that are similar to regular
expressions, as summarized in Table 2. Here, we first illustrate the operator
semantics, using E to denote a set of events (rows) of a single case and ≻ ⊆ E×E
as the temporal order over E, before giving the pattern definitions in SIGNAL,
PQL, and MATCH_RECOGNIZE in SQL. Table 2 highlights many similarities among
the languages. As such, a translation of SIGNAL and PQL patterns into the
PATTERN clause of MATCH_RECOGNIZE is straight-forward, except for two aspects.

First, to ensure that only a single match of a pattern per case is returned,
partition-wise maximal matching needs to be enforced in SQL. That is, if a
SIGNAL/PQL query does not include the starts/ends with operators, they need
to be added in the MATCH_RECOGNIZE pattern as ^ANY* and ANY*$.

Second, SQL lacks a pattern operator for does not contain. To achieve the
respective semantics, an auxiliary behaviour needs to be defined with the logical
NOT operator, which is then used in the pattern definition.

We illustrate these aspects of the translation with the PQL query in Listing 5.
It exemplifies the aforementioned approach to represent multiple behaviours per
row through string concatenation. That is, the two CASE clauses yield a behaviour
column that contains a concatenated string ‘beh_invoice_d2,beh_d2,’ as value if
a row satisfies both conditions. In addition, the PQL example includes a does not
contain operator, which is realized by a check for the negated behaviour not_d2
in the corresponding SQL query in Listing 6. Finally, the example highlights that
the absence of starts/ends with operators in the PQL query requires the insertion
of ^ANY* and ANY*$ in the SQL query to achieve an equivalent expression.

10 Jakob Brand et al.

1 CASE WHEN "Activities"."Activity" = ’Invoice sent’
2 AND "Activities"."Department" = ’D2’ THEN ’beh_invoice_d2,’,
3 ELSE ’’
4 END ||

5 CASE WHEN "Activities"."Department" = ’D2’ THEN ’beh_d2,’,
6 ELSE ’’
7 END

8 FILTER MATCH_PROCESS_REGEX("Activities"."behaviour",
9 LIKE ’%beh_invoice_d2%’ >> [! ’beh_d2,’]) = 1;

Listing 5. PQL query with NOT operator and concatenated CASE clauses.

1 SELECT case_id
2 FROM events
3 MATCH_RECOGNIZE (
4 PARTITION BY case_id
5 ORDER BY end_time
6 ONE ROW PER MATCH

7 PATTERN (^ANY* invoice_d2 not_d2 ANY*$)
8 DEFINE invoice_d2 AS event_name = ’Invoice sent’ AND department = ’D2’
9 not_d2 AS NOT(department = ’D2’))

Listing 6. SQL query with NOT operator.

3.4 Query Output

Turning to the capabilities of the languages to define the structure of the generated
output, we first note that SIGNAL and PQL operate on cases as output instances.
That is, if a pattern is matched at least once, the entire corresponding case is
included in the construction of the result, as detailed below.

SIGNAL The SELECT clause may contain attributes on the case or event level,
as well as aggregates over them. The output is a nested table with all specified
attributes and aggregates for all matched cases. Matching in SIGNAL is existential,
i.e., one satisfied match of behaviours per case is sufficient [5].

PQL A temporary column is added to the Case table, which contains 1 if a
pattern is found in a case; and 0 otherwise. Using a FILTER=1 statement, all rows
of all matched cases may be selected.

MATCH_RECOGNIZE The result structure is defined in the SELECT clause, while
the MEASURES clause of MATCH_RECOGNIZE further facilitates the computation of
aggregates and the use of match-specific functions. When translating a SIGNAL
query to SQL, columns at either case or event level as well as aggregates over them
need to be included in SQL’s SELECT statement. If the chosen columns are only
on the case level, MATCH_RECOGNIZE is used with ONE ROW PER MATCH; otherwise
ALL ROWS PER MATCH has to be selected. In PQL, when selecting matching cases
by FILTER=1, all attributes from all rows of the matched cases are returned. In
SQL, SELECT * with ALL ROWS PER MATCH mirrors this behaviour.

Querying of Process Data using SQL 11

4 Related Work

Academic process query languages typically have their roots in process modelling
and mining, and may thus query either process models [11, 1, 4] or process event
data [9, 8], in the latter case typically in the form of event logs. Industry-scale
process query languages tend to focus on the querying of event data, presumably
because process models are queried using mainstream relational and document-
based approaches, where aspects specific to the domain of BPM may be lifted to
the business logic level. For (process) event data, the two languages described
above are the two key examples of domain-specific process query languages that
have already been described in the literature.

However, process querying is rarely integrated into the wealth of database
management research. Notable examples include approaches for the discovery
of declarative process specifications, which employ standard SQL to query for
behavioural patterns [12, 13, 14]. Here, the conditions that need to be verified
to instantiate constraint templates are particularly suitable to be expressed as
declarative queries. For imperative models, the efficient extraction of control-flow
dependencies is less straight-forward, which led to efforts to implement dedicated
operators directly in the database management system [3].

Turning to generic languages for process querying, little work focused on a
comparison of these languages with mainstream database languages such as SQL,
or with languages that are theoretically well understood, such as Datalog. In [6],
the analysis of expressive power and data complexity of SIGNAL is based on a
characterisation of the core of SIGNAL using semi-positive Datalog; i.e., here
the mapping from process query language to a (theoretically well understood)
database query language aids formal analysis.

In contrast, our focus has been the use of standard SQL for process querying,
showing that the MATCH_RECOGNIZE clause is sufficient to query for behavioural
patterns as supported by SIGNAL and PQL. We believe that our results make a
compelling case for the value of inquiry also in this direction, with the objective of
making process querying more straightforwardly applicable, using the technologies
that tend to be readily available in large-scale (enterprise) information systems.

5 Conclusions

In this paper, we demonstrated that behavioural queries in two industry-scale
process query languages can be mapped to standard SQL. Our intuitive analysis
raises some technical questions, most notably regarding i) the performance of
MATCH_RECOGNIZE implementations when querying large event logs (e.g., with
billions of entries) and ii) the theoretical data complexity and expressive power
of MATCH_RECOGNIZE. Answering these questions may be particularly interesting
relative to the characteristics of real-world process querying languages, whose
scalability, complexity, and expressive power are (also) understudied. Beyond
these technical aspects, our results can serve as a starting point enabling process
querying and mining directly in the ecosystem of mainstream database systems.

12 Jakob Brand et al.

For example, it may enable process mining with the standard query languages of
enterprise systems’ relational databases, as well as in data lakehouses that collect
process data of multiple organisations for the purpose of benchmarking.

References

1. Awad, A., Sakr, S.: On efficient processing of bpmn-q queries. Computers in Industry
63(9), 867–881 (2012)

2. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

3. Dijkman, R.M., Gao, J., Syamsiyah, A., van Dongen, B.F., Grefen, P., ter Hofstede,
A.H.M.: Enabling efficient process mining on large data sets: realizing an in-database
process mining operator. Distributed Parallel Databases 38(1), 227–253 (2020)

4. Francescomarino, C.D., Tonella, P.: The BPMN visual query language and process
querying framework. In: Polyvyanyy, A. (ed.) Process Querying Methods, pp.
181–218. Springer (2022)

5. Kampik, T., Lücke, A., Horstmann, J., Wheeler, M., Eickhoff, D.: Signal – the sap
signavio analytics query language (2023)

6. Kampik, T., Okulmus, C.: Expressive power and complexity results for signal, an
industry-scale process query language. In: BPM Forum 2024. LNBIP, Springer
(2024), to appear.

7. Michels, J., Hare, K., Kulkarni, K., Zuzarte, C., Liu, Z.H., Hammerschmidt, B.,
Zemke, F.: The new and improved sql: 2016 standard. SIGMOD Rec. 47(2), 51–60
(dec 2018)

8. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Data-aware process
oriented query language. In: Polyvyanyy, A. (ed.) Process Querying Methods, pp.
49–83. Springer (2022)

9. Pérez-Álvarez, J.M., Díaz, A.C., Parody, L., Quintero, A.M.R., Gómez-López,
M.T.: Process instance query language and the process querying framework. In:
Polyvyanyy, A. (ed.) Process Querying Methods, pp. 85–111. Springer (2022)

10. Petkovic, D.: Specification of row pattern recognition in the SQL standard and its
implementations. Datenbank-Spektrum 22(2), 163–174 (2022)

11. Polyvyanyy, A.: Process query language. In: Process Querying Methods, pp. 313–341.
Springer (2022)

12. Riva, F., Benvenuti, D., Maggi, F.M., Marrella, A., Montali, M.: An sql-based
declarative process mining framework for analyzing process data stored in relational
databases. In: BPM Forum 2023. LNBIP, vol. 490, pp. 214–231. Springer (2023)

13. Schönig, S., Ciccio, C.D., Mendling, J.: Configuring sql-based process mining for
performance and storage optimisation. In: ACM/SIGAPP SAC 2019. pp. 94–97.
ACM (2019)

14. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and customisable declarative process mining with SQL. In: CAiSE 2016. LNCS,
vol. 9694, pp. 290–305. Springer (2016)

15. Vogelgesang, T., Ambrosy, J., Becher, D., Seilbeck, R., Geyer-Klingeberg, J., Klenk,
M.: Celonis PQL: A query language for process mining. In: Process Querying
Methods, pp. 377–408. Springer (2022)

16. Zhu, E., Huang, S., Chaudhuri, S.: High-performance row pattern recognition using
joins. Proc. VLDB Endow. 16(5), 1181–1194 (2023)

