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Abstract. In business processes, the behavior, evolution and interac-
tions of objects influence the outcome of process instances, and thus the
value that a business user may assign to them. For example, in an order-
to-cash process, a complete and timely delivery of a package is desirable,
but depends on what happens to other objects upstream, like produc-
tion batches. Negative outcomes call for a Root Cause Analysis (RCA)
on the process. While many approaches for RCA using process mining
exist, none is native to object-centric frameworks and thus suitable for
capturing dependencies across object types. This work presents a method
for RCA that operates on object-centric event logs (OCELs). Given an
OCEL, our method returns a set of association rules on the activity level.
These rules associate descriptive patterns over the various object types
occurring at events with patterns indicating the process outcome. The
patterns are abstracted from the log with the help of a first-order logic
based query engine. A case study confirmed that our method can identify
problematic interactions across various object types in real-life business
processes.

Keywords: Root Cause Analysis · Association Rule Mining · Object-
Centric Process Mining · Process Querying

1 Introduction

A common goal in analyzing business processes is to understand operational
problems. This endeavour is called Root Cause Analysis (RCA). For the pur-
pose of RCA, process mining techniques have been successfully deployed [1,2,3].
Existing approaches usually operate on event data that uses a fixed case no-
tion, that is, logs in which each process instance relates to a unique object of a
fixed type (e.g., a sales order or a delivery). The nature of processes, however, is
not so simple, because objects of various types and their interactions constitute
the processes of an organization. Hence, existing methods for RCA in process
mining have to either neglect information from foreign case notions or flatten
these information into the chosen case notion. This may cause issues of data
redundancy, additional effort in maintaining data integrity, or information loss
through aggregation.
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place order

rule antecedent support lift

{∃𝑜:𝑀𝑎𝑛𝑢𝑎𝑙𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑜 } → ∃𝑜:¬(𝐼𝑛𝐹𝑢𝑙𝑙 𝑜 )} 30% 2.22

confirm order

rule antecedent support lift

∃𝑝: ¬ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑝 → {∃𝑜: ¬(𝐼𝑛𝐹𝑢𝑙𝑙 𝑜 )} 40% 1.67

{∃𝑜:𝑀𝑎𝑛𝑢𝑎𝑙𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑜 } → ∃𝑜:¬(𝐼𝑛𝐹𝑢𝑙𝑙 𝑜 )} 30% 2.22

{∃𝑜:𝑀𝑎𝑛𝑢𝑎𝑙𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑜 ,
∃𝑝: ¬ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑝 } → ∃𝑜: ¬(𝐼𝑛𝐹𝑢𝑙𝑙 𝑜 )}

20% 3.33

Risk: 30%
Risk: 30%

Target Pattern (Operational Problem): {∃𝑜:¬ 𝐼𝑛𝐹𝑢𝑙𝑙 𝑜 }

Fig. 1. Our method returns association rules on the event type level (3) that can be
embedded into an object-centric process model. These rules (2) indicate which patterns
are problematic with regards to an undesired process outcome. Patterns, in turn, are
formulas over characteristics present at events, e.g., object characteristics (1).

To better account for the entangled nature of processes, object-centric process
mining frameworks have been proposed [4,5]. The principle of these frameworks
is to relate events not to a single case, but to arbitrarily many heterogeneously
typed objects. While standard process mining utilizies such as log standards
[6] do exist for the object-centric setting, we are not aware of a designated
RCA method. However, we argue that root causes of bad process outcomes may
be found across interacting objects. For instance, in a company producing and
selling goods, production of insufficient quality could be a cause for unfulfilled
orders downstream. It is therefore the goal of the research presented here (a) to
provide a method for RCA on object-centric process event logs and (b) to provide
empirical evidence from real-life processes that the supposed root causes can in
fact be found in object interactions, and that the method is able to discover this.

The output of our approach is illustrated in Fig. 1. Here, an exemplary order
management process coupled to a production process is depicted as an object-
centric process model [7]. On the one hand, production batches are created,
undergo a quality check and are eventually released after accepting the quality.
Sales orders, on the other hand, are placed by the customer and then confirmed
by the company, at which point the order is assigned to supply from production
units. In the process, it may happen that customer demands cannot be satisfied,
causing the respective order to be not delivered in full. This is an operational
problem that calls for an RCA. The process model is annotated with findings
from applying our RCA approach which is briefly described in the following.

We highlight three components that constitute our method, referring to the
bullets in Fig. 1. (1) First, patterns are learned as descriptions of event charac-
teristics. For this, a query language based on first-order logic is deployed in order
to formulate these patterns across the objects occurring and interacting at the
events. Since in object-centric processes, objects may occur at events in varying
cardinalities, this query engine offers a means to precisely formulate properties
across objects. (2) We mine for association rules [8] to identify among frequent
combinations of patterns those that are likely to lead to the negative process
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outcome. This outcome is encoded in a target pattern on the object level. For
example, here, the the rule indicated at (1) expresses that if a newly placed
order will be handled manually, the likelihood of an incomplete delivery is 2.22
times higher (lift), and 30% of the cases are handled manually (antecedent sup-
port). The third rule at confirm order exemplifies a rule that is a combination
of patterns. (3) We suggest to embed mined rules into an object-centric process
model [7]. This provides a map based on which business users could identify
risky interactions and counteract as early as possible, given that rules provide
actionable insights. To facilitate interpreting the output, we report on the model,
as in Fig. 1, event counts and object flow counts. Also, the risk at each activity
gives the a priori likelihood that an object interacting at an event will eventually
have a negative outcome.

In describing the details of our approach in the following chapters, we will
clarify some technical background concerning rule mining, and then rigorously
formalize the method. Finally, we evaluate the approach and discuss the results
in light of the research goals. We start by reviewing related work.

2 Related Work

In the simplest case, an RCA in process mining can be considered as a standard
ML task, using a data set where each instance has its outcome encoded in a
target attribute. Existing works use general classification methods [9,10]. As in
this work, rule mining has been applied for RCA [2,11,13]. Of course, instead of
investigating negative outcomes, one can also foster positive process outcomes
[12], in general, mine for deviances [13]. [14] proposes a general framework for
analyzing process properties beyond RCA.

An important step to refine basic classification is to distinguish between cor-
relation and causation. [3] uses structural equation models for estimating causal-
ity and also assessing the impact of potential improvement actions. [1] follows
a probabilistic approach with the intent to increase the robustness of findings
towards spurious correlations. [12] distinguishes between controllable and non-
controllable descriptive attributes in order to propose actionable treatments.

Closely related to our work are [2] and [13]. [2] clusters traces with regards
to problematic attributes and extracts association rules from these clusters to
discover problematic subgroups. [13] describes an approach to explain process
deviances based on declarative rule and sequence mining, also taking into account
the data perspective. As opposed to [2] and [13], our work focuses solely on the
event-type level, but extends the scope to object-centricity. To the best of our
knowledge, our work is the first to propose a pattern mining framework, as well
as more specifically an RCA method on object-centric event logs.

3 Approach

In the following, we describe how we conduct this RCA. While our approach
works on an object-centric log standard [6], we impose some assumptions on the
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structure of the input that we achieve through (semi-)automatic preprocessing.
Thus, after listing preliminaries (Sec. 3.1), we give our custom specification of
the input data (Sec. 3.2), before describing how this input is converted into a
suitable format for rule mining (Sec. 3.3).

3.1 Preliminaries

Let X be a set. The powerset of X is denoted with P(X). With B(X), we denote
the set of multisets over X. For example, [a4, b1] ∈ B(X) is a multiset over a
set X = {a, b} in which a occurs four times and b once. Given sets X,Y and a
partial function f : X ↛ Y , dom(f ) ⊆ X denotes the domain of f . Bool is the
set of boolean values true and false.

We deploy concepts from association rule mining [8] as follows. Let again
X be a set, in this context called a set of patterns. A dataset over X is D =
[Tn1

1 , ..., Tnk

k ] ∈ B(P(X)
)
, k ≥ 0, where for each i, 1 ≤ i ≤ k, Ti ⊆ X and

ni ≥ 1. We call Ti the transactions in D. Let X ′ ⊆ X. The support of X ′ in
D is defined as suppD(X ′) = Σi=1 ,...,k ,X ′⊆Tini/Σi=1 ,...,kni . Thus, the support
of a pattern set is the fraction of transactions that include a pattern set. For
X1, X2 ⊆ X, we call r = X1 → X2 an association rule over X, with X1 being
the antecedent and X2 the consequent of r. The confidence of r in D is defined
as confD(r) = suppD(X1 ∪X2 )/suppD(X1 ). The confidence of a rule gives the
relative likelihood to observe the rule consequent given the antecedent. The
lift of r is defined as liftD(r) = suppD(X1 ∪X2 )/

(
suppD(X1 ) · suppD(X2 )

)
. The

lift of a rule is a measure for the positive correlation between antecedent and
consequent; in other words, it quantifies how much more likely the consequent is
to appear in the context of the antecedent, compared to an a priori observation.

3.2 Input

Single source of truth for our approach is an object-centric event log. As remarked
previously, the basic difference between object-centric and traditional event logs
is that in the former, events may relate to an arbitrary amount of objects instead
of a fixed single case. To describe these object-centric logs, we assume the follow-
ing universes to be given: Uev are events, Uetype are event types, Uobj are objects,
Uotype are object types, and Utime are timestamps. For each object, a given func-
tion otype ∈ Uobj → Uotype fixes an object type. Furthermore, Uoattr are object
attributes. Object attributes are assumed to resemble properties of exactly one
object type, again fixed by a type signature oatype ∈ Uoattr → Uotype .

Log standards such as XES or OCEL capture the data perspective of a pro-
cess through event or case attributes using standard data types such as strings,
booleans, and numbers. In our work, aiming for an RCA, we analyze the in-
terplay of objects and attributes via pattern mining. Therefore, we enforce a
discretization of the process data, that is, properties have to be encoded as logi-
cal propositions. On the one hand, this may impose limitations to our approach,
since the question how to convert data types into a propositional form is not triv-
ial: for example, a naive handling of continuous attributes by converting each
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possible value assignment to a distinct pattern is neither feasible nor sensible
for association rule mining. On the other hand, attributes with a propositional
encoding offer a natural way to establish expressivity for describing the interplay
of objects, namely by an embedding into a first-order logic framework. That is,
we regard these encodings as predicates in the context of events. Event attributes
are regarded as predicates of arity 0, since they take no input parameters (as-
suming the event gives the context and is thus not a parameter itself). Object
attributes are predicates of arity 1, and relations between objects are predicates
of arity 2. These predicates may be assembled to formulas to be evaluated over
events: Firstly, event contexts restrict the domain of predicates to the set of
objects occurring at the events. Secondly, event contexts provides an intuitive
interpretation, assigning truth values by looking up event attributes, and object
properties at the time of event occurrence.

We would like to choose this conceptualization as the backbone of our method,
since such formulas also naturally translate to patterns in the context of rule
mining. That is, a formula satisfied at an event could be considered as a pat-
tern being part of the transaction defined by the event. In order to simplify
matters, however, we restrict ourselves here to consider only object attributes,
that is, predicates of arity 1, using from now on the terms predicate and object
attribute interchangeably. Hence, we neglect object interrelationships and event
attributes, but argue that an extension is straightforward. The following is an
accordingly customized and restricted definition of object-centric event data.

Definition 1 (Object-Centric Event Log). An object-centric event log (in
short, OCEL) is a tuple L = (E ,O ,E2O ,ET , evtype, time, oattr ,F , Γ ) where
E ⊆ Uev , E ̸= {∅}, are events, O ⊆ Uobj are objects, E2O ⊆ E × O are event-
object relations, ET ⊆ Uetype are event types, evtype ∈ E → ET are event types
per event, time ∈ E → Utime are event timestamps, oattr ⊆ Uoattr are object
attributes (predicates), and furthermore

– F ∈ ET → P(oattr) are predicates for each event type, and
– Γ ∈ E →

(
P(oattr) ↛ (O ↛ Bool)

)
such that for all e ∈ E, et ∈ ET,

if evtype(e) = et, then dom(Γ (e)) = F(et), and for all oa ∈ dom(Γ (e)),
dom(Γ (e)(oa)) = {o ∈ O | otype(o) = oatype(oa) ∧ (e, o) ∈ E2O}, are predi-
cate interpretations .

To sum up, an OCEL is a set of variously typed events (E, evtype) that
are ordered with respect to time (time). Objects (O) can occur at these events
(E2O), and the objects can carry data (oattr). In our approach, we treat event
types as first-class citizens: at those, we investigate the interplay of objects with
respect to root causes. Some attributes may hence be more or less interesting to
be considered at specific event types, for example, the elapsed time of an object
is uninteresting at an object creation event. Because of this, and also to restrict
the set of candidates for a more efficient rule mining upfront, only a subset of
the predicates describes each event type (F ). Finally, an event is characterized
by the selected attributes of objects that occur at these events (Γ ).
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𝒑𝟏 𝒐𝟏 𝒐𝟐 

create batch
06-08-2024

check quality
07-08-2024

place order
08-08-2024

confirm order
09-08-2024

accept quality
12-08-2024

place order
13-08-2024

confirm order
14-08-2024

𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 𝒆𝟕

QualityAccepted(𝑝1) = false

InFull (𝑜1) = false

ManualHandling (𝑜1) = true

InFull (𝑜1) = false
(Process 
outcome)

(Process 
outcome)

QualityAccepted(𝑝1) = true

InFull (𝑜1) = true

ManualHandling (𝑜2) = false

InFull (𝑜1) = true
(Process 
outcome)

(Process 
outcome)

Predicate
Interpretations 
Γ(𝑒)

Objects 
o ∈ O

Event-Object 
Relations 
(e, o) ∈ E2O

Events 
𝑒 ∈ 𝐸 

Event Type, 
Timestamp 
𝑒𝑣𝑡𝑦𝑝𝑒 𝑒 , 
𝑡𝑖𝑚𝑒(𝑒)

production batch order item order item

Fig. 2. An exemplary OCEL L1.

Example 1. Fig. 2 depicts an exemplary OCEL L1. This log represents a process
involving the object types order items and production batches. Here, we have:

– E = {e1, ..., e7}, O = {o1, o2, p1} with otype(o1 ) = otype(o2 ) = order item,
otype(p1 ) = production batch. E2O = {(e1 , p1 ), (e2 , p1 ), ...}, as indicated.

– ET={create batch, check quality, accept quality, place order, confirm order}.
– Types and timestamps per event are, for example, evtype(e1 ) = create batch

and time(e1 ) = 06-08-2024, and for other events as indicated.
– oattr = {ManualHandling, QualityAccepted, InFull} ⊆ Uoa , with

oatype(InFull) = oatype(ManualHandling) = order item, and
oatype(QualityAccepted) = production batch.

– F(place order) = {ManualHandling, InFull},
– F(confirm order) = {QualityAccepted, InFull}, and
– F(et) = ∅ for et ∈ {create batch, check quality, accept quality}.
– Interpretations of predicates are, for example at e3, Γ(e3) =

{(
InFull , {(o1,

false)}),
(
ManualHandling , {(o1, true)})}, and for other events as indicated.

The business scenario of L1 is the same as the one for the example described
in Sec. 1, depicted in Fig. 1 for a bigger underlying log. For an fexplanation on
the business logic, we hence refer to the first section. Note that in L1, InFull
reflects an object attribute that we associate with the process outcome. For our
RCA method, we impose two important assumptions on input logs. First, the
categorization of process outcomes with regards to the business problem has to
be encoded in such an attribute on the object level. Second, this outcome has
to be known for each object and thus recorded (retrospectively) in the log.

In the following, we describe our approach to extract rules from such event
logs that are useful for an RCA, using above log as a running example.

3.3 Pattern Mining

The artificial example L1 reflects two explanations for negative outcomes in the
process it describes. Firstly, orders that are assigned for manual instead of auto-
matic handling are associated with more processing mistakes, e.g., picking wrong
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quantities. Secondly, orders assigned to unfinished production batches may face
the issue that the supposed batch release date is not met. To unveil such correla-
tions, we rely on mining association rules that encode the explanations (ideally,
root causes reflecting real causality) in the rule antecedent and the process out-
come in the consequent. To this end, input event data has to be transformed
into a database for rule mining. For this, the concrete predicate interpretations
observed in the log have to be abstracted into generic patterns. As mentioned,
we proceed by constructing formulas over the predicates by means of common
logical connectives. In the log context, these formulas are then interpreted at
events with regards to the predicate interpretation qualifying the event.

In the following, well-formed first-order logic formulas over predicates can be
constructed by means of the binary conjunction and disjunction operators ∧,∨,
the unary negation operator ¬, and existential and universal quantifiers ∃,∀.

Definition 2 (Pattern). Let L be an object-centric event log with events E,
event types ET and predicates F. A pattern over L is a function p ∈ E ↛ Bool .
With PL, we denote the set of all patterns over L. For each et ∈ ET, the pattern
formulas PL,et ⊆ PL are the well-formed first-order logic formulas over F (et).

For example, ∃ o : InFull(o) and ∃ o : ¬
(
InFull(o)

)
1 are pattern formulas

at the event type place order in L1. In the context of e3, for instance, ∃ o :
¬
(
InFull(o)

)
(e3) = true because there exists an order o at the event, namely

o1, where the InFull predicate does not evaluate to true.
Since many different formulas, and usually also many non-equivalent formulas

can be constructed over a set of predicates, we also need to make a selection of
potentially interesting candidate patterns for conducting the RCA.

Definition 3 (Pattern Selection). Let L be an object-centric event log with
event types ET and patterns PL,et for each et ∈ ET . A pattern selection is a
function psel ∈ ET → P(PL), such that for all et ∈ ET , psel(et) ⊆ PL,et .

Given this, we can transform an OCEL into datasets for rule mining.

Definition 4 (OCEL to Pattern Datasets). Let L be an object-centric event
log with events E, event types ET and patterns PL. Furthermore, let psel ∈
ET → P(PL) be a pattern selection. The pattern datasets DL,psel ∈ ET →
B
(
P(PL)

)
corresponding to the event types in L are defined as DL,psel(et) =

[{p ∈ psel(et) | p(e)} | e ∈ E, evtype(e) = et].

Example 2. For L1, Tab. 1 lists the pattern datasets DL1,psel(et) for et ∈ {place
order, confirm order}. Here, psel selects the indicated formulas (that is, pat-

terns) over the predicates ManualHandling , InFull at place order, and at confirm
order over QualityAccepted , InFull . Consider for example event e3 (place order).
Here, the two patterns ∃o : ManualHandling(o),∃o :

(
¬ InFull(o)

)
are satisfied,

yielding the corresponding transaction in the pattern dataset. Since no other
place order event satisfies the very same patterns, the corresponding count is 1,
as for all other listed transactions (indicated by set superscripts).
1 We assume that variables are implicitly typed through the attribute typing oatype.

For example, o is of type sales order because this is the oatype of InFull.
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Table 1. Pattern datasets for activities in the exemplary log L1.

Event Type et Dataset DL1,psel(et)

place order [{∃o : ManualHandling(o), ∃o :
(
¬ InFull(o)

)
}1 ,

{∃o : ¬
(
ManualHandling(o)

)
, ∃o : InFull(o)}1 ]

confirm order [{∃p : ¬
(
QualityAccepted(p)

)
, ∃o :

(
¬ InFull(o)

)
}1 ,

{∃p : QualityAccepted(p), ∃o : InFull(o)}1 ]

Consider now D1 = DL,epat(place order) and D2 = DL,epat(confirm order).
Let r1 = ∅ → {∃ o :

(
¬ InFull(o)

)
} be an association rule. In both datasets,

we have the rule confidence confD1
(r1 ) = confD2

(r1 ) = 0.5. Speaking in terms
of an RCA in the domain, this is the a priori probability that an order will
eventually be rejected at the time when place order and confirm order happen,
respectively. Consider now the rule r2 = {∃p : ¬QualityAccepted(p)} → {∃o :(
¬ InFull(o)

)
}. We have liftD2 (r2 ) = 2 . This indicates an increase in risk if at

the time when confirm order is executed, the quality of the production batch
corresponding to the order has not yet been accepted.

Hence, the rationale of our approach is to analyze root causes of negative
process outcomes (a) along the process, that is, for each activity of interest and
(b) across all relevant object types of interest. For this, we deploy association
rules where the problematic outcome is encoded in the rule consequent (in the
following called target pattern), and the rule antecedents (in the following called
descriptive patterns) reflect possible explanations. In the next chapter, we de-
scribe the implementation of our solution.

4 Implementation

We implemented facilities for the approach presented here, also provided via
Github2. In the following, we describe the application pipeline of the tool (1-2),
describe how the results can be put into the context of a process model (3), and
give heuristics to select interesting rules from the mined rules (4).

1) Log Preprocessing. Our tool accepts a log in the OCEL2.0 [6] standard.
Upon upload, predicates are derived from the observations. As mentioned earlier,
we are not restricted to capture only object attributes, but may also encode event
attribute assignments and object relationships. Attributes are only regarded if
the number of unique labels (values) does not exceed a user-defined threshold.
This applies to attributes of any type, both nominal and non-nominal.

2) Pattern Search. By default, existentially quantified formulas are con-
structed over object attributes, comparable to the examples shown in the previ-
ous section. Also, formulas describing event attributes are constructed. Our tool

2 https://github.com/beneknopp/interaction-pattern-mining

https://github.com/beneknopp/interaction-pattern-mining
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allows to specify custom formulas over the available predicate symbols. Besides
a selection of descriptive patterns, the target pattern has to be specified. After
selecting patterns for each event type of interest, association rules are mined [8],
parametrized by a minimal support of individual patterns.

3) Presentation. In order to comprehensively report the mining results, we
suggest to consider a frequency-annotated object-centric directly-follows graph
(OCDFG) [7], as depicted in Fig. 1. An OCDFG is the generalization of a tradi-
tional DFG involving multiple object types. Each activity shows the frequency of
occurrences, i.e., the number of events of that activity. Each typed edge between
two activities is also annotated with the number of times this directly-follows
relation was realized by an object of the respective type. Here, we report at each
event type as risk the confidence of the rule ∅ → {p}, where p is the target
pattern. That is the a priori likelihood that at event time, the process will even-
tually have a negative outcome. The annotated model may be helpful in putting
the rules at event types into the context of the whole process.

4) Result Interpretation. Various criteria can be useful to assess the rele-
vance of rules, for example, support and lift. However, an insufficiency of the lift
is given that multiple patterns are present in the antecedents, it is not discerned
between problematic and unproblematic constituents. We introduce the notion
of the context lift of a rule r = X → C with |X| > 1, as

clift(X → C) = max
x∈X

lift(X → C )

lift(X \ {x} → C )
= max

x∈X

conf (X → C )

conf (X \ {x} → C )
,

and call the corresponding argmax x ∈ X the root cause and the antecedent
remainder X \ {x} the context of the rule. Furthermore, given a rule X → C
with root cause x ∈ X, we define the lift gain as

gain(X → C ) =
clift(X → C )

lift({x} → C )
.

The context lift is helpful to find patterns that are problematic within a specific
context, that is, a subset of the event population that is characterized by certain
patterns. The lift gain describes how much more problematic the root cause is
in the specific context of the rule. This can help to discern interesting rules,
but also to discern rules that are uninteresting because context and root-cause
are positively correlated. We illustrate these measures and substantiate their
usefulness at the example of our real-life experiments.

5 Case Study and Discussion

To validate the usefulness our approach, we investigated the order-to-cash pro-
cess of a globally acting food and drink processing company. The used (confi-
dential) object-centric log is based on SAP data from multiple dimensions. We
focus here on the object types sales order items/headers, delivery items and
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Table 2. Some findings from applying our approach to the real-life OCEL at the event
type confirm order on a data set of 10.000 records. The risk of the target pattern
is 0.91%. At the fourth rule, the root cause is indicated with dotted underlining. To
consolidate the findings, we report the same measurements on more samples, in Fig. 3.

Object Types
(Variables)

Rule
r = X → C

support
(X)

lift
(r)

clift
(r)

gain
(r)

production batch (p),
sales order item (o)

{ ∃ p : IssueQuality(p)}
→ {∃ o : ¬InFull(o) }

3.37% 1.45 - -

sales order header (h),
sales order item (o)

{ ∃ h : ¬LastActCreateHeader(h)}
→ {∃ o : ¬InFull(o) }

26.63% 1.47 - -

sales order item (o) { ∃ o : ¬DaysSinceCreation=0 (o)}
→ {∃ o : ¬InFull(o) }

5.80% 3.38 - -

sales order header (h),
sales order item (o)

{ ∃ h : ¬LastActCreateHeader(h),
∃ o : ¬DaysSinceCreation=0 (o). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .}

→ {∃ o : ¬InFull(o) }

3.13% 6.26 4.26 1.26

production batches. The use case is comparable to the example deployed in the
previous sections.

Tab. 2 sums up exemplary findings. The depicted rules are based on a sam-
ple of 10.000 sales order items extracted from the whole population of around
300.000 items, and the same number of events of type confirm order. An item is
(transitively) linked to objects of other types, to which we exploded the event-to-
object relations in order to apply our approach. Namely, each item has exactly
one header, one to many delivery items, and each delivery item draws supply
from exactly one production batch. However, by filtering, we select only sales
order items that are linked to exactly one delivery item. We choose this filter in
order to facilitate interpreting the mined rules, since each existentially quanti-
fied formula in a rule, for each event, binds to an unambiguous reference object.
Thus, measurements are not obfuscated by varying object type multiplicities.

All depicted rules indicate, in varying severity, an increase in risk (lift) given
that the antecedent patterns are satisfied. The first rule depicted is triggered if
the linked production batch has had a quality issue at some point during pro-
duction. The second rule is triggered if the control flow of the item’s header has
advanced beyond the initial stage of header creation. In the underlying process,
this is usually an event indicating a change of delivery block. The third rule is
triggered if the event happens not on the same day on which the order item was
created. The fourth rule is a combination of the former two. Here, the context lift
indicates that the days-pattern increases the risk in the header-activity context
by 4.26. The lift gain confirms that the days-pattern is in fact more problematic
in this context as opposed to independent occurrence, namely 1.26 times more
problematic. To consolidate our findings, we evaluated these four rules on in
total 20 samples of the same size of 10.000 records, as reported in Fig. 3.
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Fig. 3. We evaluated the four rules listed in Tab. 2 on 20 independent random samples
of the same size of 10.000 events. Also, the risk is reported (left).

The experimental results show the strength of the approach and, in particu-
lar, the added value of the surrounding object-centric framework, in conducting
an RCA. This is exemplified by the first two rules in Tab. 2, which relate the
outcome captured on the level of one object type to descriptive patterns at other
object types. At the second and third rule, the control-flow nature of the pat-
terns suggest that embedding the rules on top of a process model can be useful.
The fourth row of Tab. 2, by linking together multiple patterns and pinpointing
the problematic one, shows the usefulness of mining for itemsets and of the in-
troduced evaluation metrics. Finally, having verified the stability of rule quality
over multiple samples (Fig. 3), we argue that we have found evidence that bad
process outcomes can in fact be explained via interacting objects, as aimed for
in our research goal. However, an in-depth assessment of the causality of rules
and actionability for process owners is out of scope of this work.

A limitation of the approach is that rules can be hard to interpret if formulas
refer to object types of varying cardinalities. This challenge is inherent to the
object-centric framework that allows for this variability. As stated, we dispelled
such ambiguities in our experiments by pre-filtering the input. Another short-
coming of our approach follows from the inherent limitation of itemset mining to
discretized attributes. Here, we see potential for refinement in future work, for
example by adapting the C4.5 algorithm well-known from decision tree learning
for discretizing numerical and continuous attributes.

6 Conclusion

In this paper, we have introduced a novel method for root cause analyses (RCA)
on object-centric logs using association rule mining. The experiments have sub-
stantiated the usefulness of that method. In our opinion, the results suggest a
synergy between pattern mining and object-centric process mining.

The first-order logic based query engine implemented here is not restricted
in its use to RCA. We argue that other use cases are possible, as long as these
can be formulated on the event level. For example, one could validate constraints
at event types using arbitrary complex formulas. In future work, we would like
to explore via case studies whether complex root causes can be found in real



12 B. Knopp et al.

processes that further leverage the presented logical query engine. Also, we would
like to explore whether pattern-based descriptions can be used for creating more
realistic discrete event simulation models.
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