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Abstract. A sub-field of process mining, conformance checking, quan-
tifies how well the process behavior of a model represents the observed
behavior recorded in a log. A stochastic-aware perspective that accounts
for the probability of behavior in both model and log is necessary to
support conformance checking. However, existing stochastic conformance
checking measures are not comparable for a broad framework that in-
cludes log-to-log (L2L), log-to-model (L2M), and model-to-model (M2M)
comparison settings. Therefore, we propose a stochastic conformance
checking metric based on the Jensen-Shannon Distance (JSD), which
interprets models and logs as probability distributions over traces. It can
be applied to L2L, L2M, and M2M conformance, while the latter requires
approximation. Notably, it is the only known stochastic conformance
measure that qualifies as a metric. JSD has been implemented and is
publicly available. Our quantitative evaluations show its feasibility on
real-life event data, which provides diagnostic results different from those
of existing measures. Moreover, experiments in M2M settings confirm
that our measure can be approximated using unbiased sampling.

Keywords: Process mining, Stochastic process mining, Stochastic conformance
checking

1 Introduction

Information systems in modern organizations keep track of process executions
performed by employees, managers, and customers as event data. Such data can
be extracted as an event log, which is a collection of recorded traces, where each
trace is a sequence of activities recorded from a process execution. By leveraging
the historical event data in event logs, process mining studies ways to optimize
real-world processes [1].

In process mining, conformance checking relates events in the event log
to activities in the process model to identify commonalities and differences
between them, i.e., log-to-model comparison (L2M). For example, the results of
L2M conformance checking can be used to inform auditing efforts. Additionally,
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Fig. 1: Three scenarios of stochastic conformance checking: L2L, L2M, and M2M.

conformance checking may also include model-to-model comparisons (M2M) [1,
p265]. For instance, to compare models discovered from geographically different
regions. Furthermore, log-to-log conformance checking (L2L) compares two logs
directly with one another. L2L conformance checking can be used for, e.g.,
detecting concept drift, which refers to the situation where differences in the
same process over time are sought.

In real-life processes, certain process behavior occurs more frequently than
other behavior. Consider two event logs, [〈a, b〉50, 〈b, a〉50〉] and [〈a, b〉80, 〈b, a〉20〉],
which have the same trace variants but differ in the relative frequency of their
traces. Obviously, these two logs do not share the same process behavior, which
should therefore be considered by conformance checking techniques. As for M2M
conformance checking, one can detect and quantify changes in stochastic behavior
by comparing the latest discovered model with the initial model. Similarly,
event logs that cover long periods or merge data from multiple organizations may
contain different versions of process behavior. By applying stochastic conformance
for L2L settings, one can avoid misleading conclusions when addressing concept
drift. We illustrate these scenarios of stochastic conformance checking in Fig. 1.

To the best of our knowledge, existing stochastic conformance checking
techniques either do not support all of L2L, L2M and M2M, or the measure
results in values that are incomparable across the three settings [18,20,23].

In this paper, we propose a stochastic conformance checking metric based on
the Jensen-Shannon Distance (JSD) [11]. This metric interprets process behavior
in an event log or a stochastic process model as a probability distribution of
traces. JSD can be applied for stochastic conformance checking across three
scenarios: i) L2L settings, ii) L2M settings where the stochastic model has a
finite state space, and iii) M2M settings using unbiased sampling.

The metric has been implemented and is publicly available. We compared it
quantitatively with existing stochastic conformance techniques on several real-life
event logs and stochastic process models. Moreover, for the M2M setting, we
evaluated the influence of the sample size.

The remainder of the paper proceeds as follows. We first discuss related work
in Section 2 and introduce preliminaries in Section 3. In Section 4, we introduce
JSD in L2L, L2M, and M2M settings, after which we evaluate it in Section 5.
Finally, Section 6 concludes the paper.



2 Related Work

Recently, several techniques for stochastic process discovery have been proposed,
including the weight estimation techniques that discover an SLPN from the input
event log and control flow model [6,16], and techniques that directly construct a
stochastic model from an input event log [24,3].

Conformance checking for non-stochastic models has been extensively dis-
cussed [7]. [2] emphasized the importance of considering probabilities in confor-
mance checking. Entropic Relevance (ER) [23] computes the average number
of bits to compress each log trace by leveraging the trace likelihood informa-
tion in a stochastic model. Entropy Recall (E-Recall) and Entropy Precision
(E-Precision) [18] quantifies frequent and rare deviations between an event log and
a stochastic model by treating both log and model as stochastic automata, and
comparing the entropy of these automata with the entropy of a third automaton
that represents the conjunctive behavior. Probabilistic Alignments [4] consider
the frequencies of traces in logs and calculate the likelihood of a move being syn-
chronous or not in the stochastic process model. Bogdanov et al. [5] proposed an
alignment-based algorithm that computes the conformance cost between a model
and a stochastically known log [12]. The Alpha Precision [8] uses the stochastic
language of the model and the event log, and inferences about the underlying
system that generated the log. Another recent work proposed unit Earth Movers’
Stochastic Conformance (uEMSC) and Earth Movers’ Stochastic Conformance
(EMSC) [14] that measure the effort of transforming the distribution of traces in
the log to that described in the stochastic model. uEMSC cannot be applied to
the M2M setting. Although EMSC can be applied to L2M and M2M, it relies on
a biased truncation to sample traces from models.

These stochastic conformance checking techniques either only support L2M
settings, or the measures provide values that are incomparable across the L2L,
L2M, and M2M settings.

3 Preliminaries

Given a set of elements S, a multiset X : S → N maps the elements of S to the
natural numbers, such that X allows for multiple instances for each of its elements.
For example, X = [a, b4, c5] is a multiset with ten elements: one a, four b’s, and
five c’s. The union of two multisets X1 and X2 is denoted as X1 ]X2. Multiset
subset X1 F X2 denotes ∀s∈SX2(s) ≥ X1(s). If X1 F X2, then X3 = X2 \-X1 is
the multiset difference, such that ∀sX3(s) = X2(s)−X1(s).

An event log is a collection of traces, which are sequences of events. We can
transform an event log into a stochastic language by dividing the frequency of
each trace by the total number of traces.

Definition 1 (Stochastic Languages). Let Σ be a finite set of activities and
let Σ∗ be the set of all finite sequences of activities ( traces) over Σ. Then, a
stochastic language l is a function that maps each trace in Σ∗ to a probability,
that is, l : Σ∗ → [0, 1], such that

∑
σ∈Σ∗ l(σ) = 1.



A stochastic language assigns probabilities to traces so that the assigned prob-
abilities sum up to one. Inherently, an event log denotes a finite stochastic
language. For instance, given two event logs L1 = [〈a, b〉3, 〈b, a〉2] and L2 =
[〈a, b〉80, 〈a, b, b〉20], their finite stochastic languages are l1 = [〈a, b〉0.6, 〈b, a〉0.4]
and l2 = [〈a, b〉0.8, 〈a, b, b〉0.2], respectively.

A stochastic process model is a model that describes a stochastic language.
We introduce two types of stochastic process models: stochastic labeled Petri
nets and stochastic deterministic finite automata.

Definition 2 (Stochastic Labeled Petri Nets). Let Σ be an alphabet of
activities, a stochastic labeled Petri net (SLPN) is a tuple (P, T, F,w, ρ,m0)
where P is a set of places, T is a set of transitions such that P ∩ T = ∅,
F ⊆ (P × T ) ∪ (T × P ) is a flow relation, w : T → R0 is a weight function,
ρ : T → Σ ∪ {τ} is a labeling function, and m0 F P∞ is an initial marking.

A marking in an SLPN is a multiset of places. An SLPN starts its execution
from its initial marking. Let •t = [p | (p, t) ∈ F ] be the set of places directly
before transition t, t• = [p | (t, p) ∈ F ] be the set of places directly after t, and
Te = {t | •t F m} denote all enabled transitions in a marking m. An enabled
transition t ∈ Te can fire with probability p(t | m) = w(t)

Σt′∈Te
w(t′) , which results in

a new marking m′ = m ] t• \- •t.
A path is a sequence of transitions 〈t1, . . . , tn〉 that are fired along with

a sequence of markings 〈m0, . . . ,mn〉, such that ∀1≤i≤n
•ti F mi−1 ∧ mi =

mi−1] t•i \- •ti and Te = ∅ for mn. That is, a path brings the model from its initial
marking m0 to a deadlock marking. The probability of the path 〈t0, . . . , tn〉 is∏

1≤i≤n p(ti | mi−1). For an SLPN, a transition t with ρ(t) = τ is unobservable,
which is referred to as silent. The projection of a path by labeling function ρ on
the non-τ transitions is a trace, and there may be several (even countably-infinite
many�[17]) paths that project to the same trace.

For instance, M1 in Fig. 2 is an SLPN with two silent transitions τ1 and
τ2 and three transitions with labels a, b, and c. 〈a, τ1, τ2, τ1, b〉 and 〈a, τ1, b〉 are
two paths that correspond to the trace 〈a, b〉 for M1 in �Fig. 2. M1 can generate
infinitely many different traces, thus its stochastic language is infinite.
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2
b
1
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Fig. 2: SLPN M1.
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Fig. 3: SDFA M2.

Definition 3 (Stochastic Deterministic Finite Automata). A stochastic
deterministic finite automaton (SDFA) is a tuple (S,A, δ, λ, π, s0) where S is a



finite set of states, A is a finite set of actions, δ : S × A → S is a transition
function, λ : S × A → (0, 1] is a transition probability function, π : S → [0, 1]
denotes the termination probability for states, and s0 is the initial state. For each
state s ∈ S, it holds that

∑
a∈A λ(s, a) + π(s) = 1.

For example, the SDFA shown in Fig. 3 has two states, s0 and s1. The
initial state is s0, and its transition function is defined by {(s0, a, s1), (s1, b, s1)}.
Arc from s0 to s1 with label a:1 specifies that (s0, a, s1) ∈ δ and (s0, a, 1) ∈ λ.
For states s0 and s1, it holds that π(s0) = 0 and π(s1) = 0.1. A trace in an
SDFA is a sequence of transitions 〈a0, . . . , an〉 after going through a sequence of
states 〈s0, . . . , sn〉 and terminates at sn, such that ∀0≤i<nδ(si, ai) = si+1. The
probability of the trace is π(sn) ·

∏
0≤i<n λ(si, ai).

By converting event logs and stochastic models to stochastic languages, we
reduce stochastic conformance to the problem of comparing the similarity of
two stochastic languages. Given two stochastic languages, the Kullback-Leibler
Divergence (KLD) quantifies the difference between the probability distributions
over traces in one stochastic language compared to those in another.

Definition 4 (Kullback-Leibler Divergence). Let Σ be a finite set of activ-
ities, Σ∗ be the set of all finite sequences of activities ( traces) over Σ, and l and
l′ be two stochastic languages. The Kullback-Leibler Divergence of l with respect
to l′ is defined as:

kld(l, l′) =
∑
σ∈Σ∗

l(σ) log2
l(σ)

l′(σ)

We use that 0 log 20 = 0. KLD is not symmetric, as kld(l, l′) may not equal
kld(l′, l). If one trace has a zero probability in l′ and not in l, kld(l, l′) is undefined.
The Jensen-Shannon Distance (JSD) overcomes this limitation by comparing two
stochastic languages based on their average stochastic language:

Definition 5 (Average Stochastic Languages). Let Σ be a finite set of
activities, Σ∗ be the set of all finite sequences of activities ( traces) over Σ, and l
and l′ be two stochastic languages. The stochastic languages l′′ for which it holds
that ∀σ∈Σ∗ l′′(σ) = 0.5(l(σ) + l′(σ)), is the average stochastic language of l and
l′ denoted by avg(l, l′).

For example, la = [〈a, b〉0.7, 〈b, a〉0.2, 〈a, b, b〉0.1] is the average stochastic language
of l1 and l2. Given two stochastic languages, their Jensen-Shannon Distance is
defined as follows.

Definition 6 (Jensen-Shannon Distance (JSD)). Let l and l′ be two stochas-
tic languages. The Jensen-Shannon Distance between l and l′ is: jsd(l, l′) =√

kld(l,l′′)+kld(l′,l′′)
2 where l′′ = avg(l, l′).

JSD is bound between 0 and 1. Moreover, JSD using a square root is a
metric [11], thus for any stochastic languages l, l′ and l′′, we have: i) Reflexivity:
jsd(l, l′) = 0 ⇔ l = l′, ii) Symmetricity: jsd(l, l′) = jsd(l′, l), and iii) Triangle
inequality: jsd(l, l′) + jsd(l′, l′′) ≥ jsd(l, l′′).



4 Stochastic Conformance Checking with Jensen-Shannon
Distance

In this section, we discuss how to compute JSD in L2L, L2M, and M2M settings.

4.1 Log-to-log

In the L2L setting, given that a log induces a finite stochastic language, and the
average stochastic language of two logs is also finite, we directly apply Definition 6.
Let l and l′ be the stochastic languages of two event logs, and let l′′ = avg(l, l′)
be their average language. Let L>0 = {σ | l(σ) > 0} and L′

>0 = {σ | l′(σ) > 0},
we have:

jsd(l, l′) =

√
kld(l,l′′) + kld(l′, l′′)

2
(1)

where,

kld(l, l′′) =
∑

σ∈L>0

l(σ) log2
l(σ)

l′′(σ)

kld(l′, l′′) =
∑

σ∈L′
>0

l′(σ) log2
l′(σ)

l′′(σ)

As l and l′ for both event logs are finite, the terms in Eq. (1) are finite. We
adopt l(σ) log2

l(σ)
l′′(σ) = 0 if l(σ) = 0, and l′(σ) log2

l′(σ)
l′′(σ) = 0 if l′(σ) = 0.

For instance, given the stochastic languages and the average stochastic lan-
guage l1, l2, and la for logs L1 and L2, we have: kld(l1, la) = 0.6 log2

0.6
0.7 +

0.4 log2
0.4
0.2 ≈ 0.267 and kld(l2, la) = 0.8 log2

0.8
0.7 + 0.2 log2

0.2
0.1 ≈ 0.354. Hence,

the JSD for L1 and L2 is jsd(l1, l2) =
√

0.267+0.354
2 ≈ 0.575.

4.2 Log-to-model

The definition of JSD relies on an average stochastic language of two input
stochastic languages. Hence, the average stochastic language may be infinite.
However, as an event log always corresponds to a finite stochastic language, we can
avoid explicitly constructing the potentially infinite average stochastic language
of an event log and a bounded stochastic model by rewriting Definition 6.

Let l and m be the input event log and stochastic model’s stochastic languages,
based on Definition 4 and Definition 5, we have:

jsd(l,m) =

√∑
σ∈Σ∗ n(σ)

2
(2)

where,

n(σ) = l(σ) log2
2l(σ)

l(σ) +m(σ)
+m(σ) log2

2m(σ)

l(σ) +m(σ)



Let Σ∗
0 = {σ | l(σ) = 0 ∧m(σ) = 0} denote the set of traces that are in neither

the log nor the model. For all σ ∈ Σ∗
0 , we have n(σ) = 0. Hence, we only consider

the traces in Σ∗\Σ∗
0 , i.e., traces that are observed in l or m.

Base on set theory, Σ∗\Σ∗
0 = Σ∗

1 ∪Σ∗
2 ∪Σ∗

3 , such that Σ∗
1 = {σ | l(σ) > 0 ∧

m(σ) > 0}, Σ∗
2 = {σ | l(σ) > 0∧m(σ) = 0}, and Σ∗

3 = {σ | l(σ) = 0∧m(σ) > 0}.
By splitting set Σ∗\Σ∗

0 into the union of three subsets, n(σ) in Eq. (2) can be
written as a piecewise function:

n(σ)=


l(σ) log2

2l(σ)

l(σ)+m(σ)
+m(σ) log2

2m(σ)

l(σ)+m(σ)
, if σ ∈ Σ∗

1

l(σ), if σ ∈ Σ∗
2

m(σ), if σ ∈ Σ∗
3

Then, we can rewrite Eq. (2) as follows:

jsd(l,m) =

√
j1(l,m) + j2(l,m) + j3(l,m)

2
(3)

where,

j1(l,m)=
∑
σ∈Σ∗

1

l(σ) log2
2l(σ)

l(σ)+m(σ)
+m(σ) log2

2m(σ)

l(σ)+m(σ)

j2(l,m)=
∑
σ∈Σ∗

2

l(σ) = 1−
∑
σ∈Σ∗

1

l(σ)

j3(l,m)=
∑
σ∈Σ∗

3

m(σ) = 1−
∑
σ∈Σ∗

1

m(σ)

In Eq. (3), we compute
∑

σ∈Σ∗
1
l(σ) and

∑
σ∈Σ∗

1
m(σ) to derive j2(l,m) and

j3(l,m). First, we query the model for the probability of each log’s trace leveraging
the technique discussed in [17] for j1(l,m). Note that this step is non-trivial,
as there can be an infinite number of SLPN paths corresponding to one trace.
Therefore, we avoid explicitly computing an infinite average stochastic language
for l and m.

For instance, for L2 and M1, we first calculate the probability of each L2’s
trace in M1, that is, m1(〈a, b〉) = 0.5, m1(〈b, a〉) = 0. Given that l2(〈a, b〉) = 0.8,
we have: j1(l2,m1) = 0.8 log2

0.8
0.65 + 0.5 log2

0.5
0.65 ≈ 0.050.

Then, the second term j2(l2,m1) = 1 − 0.8 = 0.2, as trace 〈b, a〉 is only
observed in log. The third term j3(l2,m1) = 1− 0.5 = 0.5 is the probability sum
of traces generated by M1 while not observed in L2. Finally, the JSD for L2 and
M1 is jsd(l2,m1) =

√
0.050+0.2+0.5

2 ≈ 0.613.

4.3 Model-to-model

In the M2M setting, given two SDFAs, if their average stochastic language is an
SDFA, then it is possible to transform the computation of JSD by leveraging
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Definition 5. Let m, m′, m′′ be three SDFAs, such that m′′ is the average SDFA
of m and m′. The JSD of m and m′ is:

jsd(m,m′) =

√
kld(m,m′′) + kld(m′,m′′)

2
(4)

Applying Eq. (4) relies on the average SDFA for two input SDFAs. However, an
average SDFA does not always exist [25]. Hence, in this paper, we do not attempt
to find a general strategy to construct an average SDFA for two input SDFAs, or
an average SLPN for two input SLPNs, and leave the exact characterization of
cases as future work.

Instead, we approximate the true value of JSD by sampling, as illustrated
in Fig. 4. For each model, we generate a collection of traces that represent the
model’s process behavior. In each sampling iteration, a random walk is performed
to generate a trace from the model. During a random walk in an SLPN, the
probability of firing an enabled transition depends only on the current marking.
In an SDFA, the probability of taking the next action depends only on the current
state. The walk continues until it reaches the final marking for SLPN or the final
state for SDFA, and a trace is generated. Furthermore, each trace is generated
independently. Subsequently, the collection of sampled traces is used to construct
a finite stochastic language.

The difference between our approach and the truncation technique in [20] is
that traces are generated by their probability rather than length, as the truncation
approach favors shorter traces over lengthier ones. Thereby, an approximated JSD
value can be computed following Eq. (1) using stochastic languages constructed
from two models.

5 Evaluation

JSD has been implemented and is publicly available [21], and we used publicly
available event logs to evaluate its feasibility. First, we compare JSD with existing
stochastic conformance checking measures. Then, we study the implication of
sample size when approximating JSD in the M2M setting.

5.1 Quantitative Comparison
In this experiment, we compare the result of JSD with other stochastic con-
formance checking measures using three publicly available event logs [22,10,9].



Table 1: Experiment results of different stochastic conformance values with row-wise
ranking. The errors for E-Recall and E-Precision were due to an unknown exception.
Event Log Measure d-uemsc d-er d-freq d-align d-scale

Road [22] uEMSC 0.408 (1) 0.221 (2) 0.010 (5) 0.219 (3) 0.112 (4)
EMSC 0.731 (3) 0.758 (1) 0.641 (5) 0.735 (2) 0.658 (4)
ER 8.302 (4) 6.685 (1) 23.296 (5) 6.698 (2) 7.731 (3)
E-Recall 0.909 (1) 0.909 (1) Error 0.909 (1) 0.836 (4)
E-Precision 0.783 (1) 0.692 (3) Error 0.707 (2) 0.512 (4)
JSD 0.338 (1) 0.389 (3) 0.818 (5) 0.387 (2) 0.514 (4)

Offer [10] uEMSC 0.656 (1) 0.583 (2) 0.539 (4) 0.581 (3) 0.581 (3)
EMSC 0.916 (1) 0.910 (2) 0.901 (5) 0.910 (2) 0.910 (2)
ER 3.363 (4) 3.209 (1) 8.429 (5) 3.210 (2) 3.214 (3)
E-Recall 0.996 (1) 0.996 (1) 0.996 (1) 0.996 (1) 0.923 (5)
E-Precision 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1)
JSD 0.114 (4) 0.108 (1) 0.208 (5) 0.108 (1) 0.109 (3)

Request [9] uEMSC 0.778 (1) 0.766 (2) 0.005 (5) 0.712 (3) 0.418 (4)
EMSC 0.886 (2) 0.885 (3) 0.457 (5) 0.897 (1) 0.644 (4)
ER 8.465 (2) 8.368 (1) 28.471 (5) 8.604 (3) 11.389 (4)
E-Recall 0.764 (1) 0.764 (1) 0.764 (1) 0.764 (1) 0.000 (5)
E-Precision 1.000 (1) 1.000 (1) 0.003 (4) 0.814 (3) 0.000 (5)
JSD 0.091 (2) 0.072 (1) 0.995 (5) 0.118 (3) 0.582 (4)

First, given an event log, Inductive Miner [15] is used to construct a control-flow
model. Next, we discover a stochastic model (SLPN) using stochastic discovery
techniques, including d-uemsc, d-er, d-freq, d-align, and d-scale [6,16]. Finally,
different measures have been applied to evaluate the stochastic conformance be-
tween each log and SLPNS, including uEMSC, EMSC, ER, E-Recall, E-Precision,
and JSD. The results are presented in Table 1. Note that for uEMSC, EMSC,
E-Recall, and E-Precision, a higher value indicates better stochastic conformance.
For distance measures ER and JSD, a lower value is better.

Overall, a model with a good uEMSC, EMSC, and ER also ranks higher for
JSD. Although there is no unanimous agreement across JSD and other measures
on the best stochastic model, there is partial agreement on the worst models.
Stochastic models discovered using d-freq and d-scale have lower stochastic quality,
as indicated by their worse ranks of JSD and other conformance measures.

When using the Spearman Correlation to examine the relationship between
JSD and other conformance measures, JSD does not present a strong positive
correlation with existing measures, as illustrated in Fig. 5. For instance, although
JSD is strongly correlated to uEMSC for logs Road and Request, this pattern
is not observed in log Offer. When comparing JSD and EMSC, a medium to
high correlation is observed in all three logs. As E-Precision for log Offer is 1
for all models, it does not rank differently and presents any positive or negative
correlation with JSD. Therefore, stochastic conformance checking with JSD leads
to different conclusions.



(a) Road [22]. (b) Offer [10]. (c) Request [9].

Fig. 5: Spearman correlation for stochastic conformance measures over different logs.

5.2 Influence of Sample Size

In this evaluation, we study the influence of sample size on approximating JSD
between two SLPNs. We first constructed control-flow models with loops for log
Domestic [9] using Direct-Follow Miner (dfm) [19], and then discovered SLPNs
with d-uemsc, d-er, d-freq, d-align, and d-scale. We increased the number of
traces sampled from 10 to 8000 to study how the sample size influences returned
values. To reduce the effect of randomness, we repeat the computation 500 times
for each sample size and compute the average JSD across all the repetitions.

The results are shown in Fig. 6, in which the x-axis represents the sampled
trace size and the y-axis is the JSD value. The blue region represents the range of
JSD values obtained from repeated experiments. As the number of sampled traces
increases, the blue region gradually converges. Specifically, if the sample size is
small and insufficient traces are generated, the JSD values vary considerably.

JSD shows expected behavior with an increasing number of sampled traces.
Also, the sample is unbiased, i.e., it does not favor shorter traces over longer
ones like the truncation technique used in EMSC [20]. With a larger sample size,
loops are unfolded in the model with more traces generated, and the stochastic
language approaches the true trace distribution of the model.

6 Conclusion

This paper studies the applicability of Jensen Shannon Distance for stochastic
conformance checking. JSD is a metric that compares the trace distributions of two
stochastic languages with that of their average language. This distance measure
can be applied for log-to-log, log-to-model, and model-to-model conformance
checking, the latter setting in general requiring an approximation using, for
instance, an unbiased sampling presented in this work.
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Fig. 6: Approximated JSD with sampling in M2M settings.

We evaluated the feasibility of JSD for conformance checking using real-
life event logs and stochastic process models discovered from these logs. The
comparison with existing stochastic conformance measures demonstrated that
JSD measurements may lead to different conclusions, an observation deserving of
further exploration in future works. In addition, we confirmed empirically that
the proposed approximation of model-to-model conformance converges with the
growth of simulated event logs.

Furthermore, the metric property of JSD can be used in different applications,
such as searching for similar models [13]. Another interesting direction is to
identify the explicit construction of an average stochastic language, i.e., extend the
measure for accurate computation in the M2M setting. Finally, we plan to assess
whether JSD satisfies desired properties for stochastic conformance measures,
such as properties designed for stochastic recall and precision measures [18].

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. van der Aalst, W.M.P.: Relating process models and event logs - 21 confor-
mance propositions. In: ATAED@Petri Nets/ACSD. CEUR Workshop Proceedings,
vol. 2115, pp. 56–74. CEUR-WS.org (2018)

3. Alkhammash, H., Polyvyanyy, A., Moffat, A.: Stochastic directly-follows process
discovery using grammatical inference. In: CAiSE. LNCS, vol. 14663, pp. 87–103.
Springer (2024)

4. Bergami, G., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic trace alignment.
In: ICPM. pp. 9–16. IEEE (2021)



5. Bogdanov, E., Cohen, I., Gal, A.: Conformance checking over stochastically known
logs. In: BPM (Forum). LNBIP, vol. 458, pp. 105–119. Springer (2022)

6. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight
estimation. In: ICPM Workshops. LNBIP, vol. 406, pp. 260–272. Springer (2020)

7. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

8. Depaire, B., Janssenswillen, G., Leemans, S.J.J.: Alpha precision: Estimating the
significant system behavior in a model. In: BPM (Forum). Lecture Notes in Business
Information Processing, vol. 458, pp. 120–136. Springer (2022)

9. van Dongen, B.: Bpi challenge 2020 (2020)
10. van Dongen, B.: Bpi challenge 2017 - offer log (2021)
11. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE

Trans. Inf. Theory 49(7), 1858–1860 (2003)
12. Gal, A.: Everything there is to know about stochastically known logs. In: ICPM.

IEEE (2023)
13. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity - A proper metric. In:

BPM. LNCS, vol. 6896, pp. 166–181. Springer (2011)
14. Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A.: Stochastic

process mining: Earth movers’ stochastic conformance. Inf. Syst. 102, 101724 (2021)
15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured

process models from incomplete event logs. In: Petri Nets. LNCS, vol. 8489. Springer
(2014)

16. Leemans, S.J.J., Li, T., Montali, M., Polyvyanyy, A.: Stochastic process discovery:
Can it be done optimally? In: CAiSE. LNCS, vol. 14663, pp. 36–52. Springer (2024)

17. Leemans, S.J.J., Maggi, F.M., Montali, M.: Enjoy the silence: Analysis of stochastic
petri nets with silent transitions. Inf. Syst. 124, 102383 (2024)

18. Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware precision and recall measures
for conformance checking in process mining. Inf. Syst. 115, 102197 (2023)

19. Leemans, S.J.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining:
Exploration & a case study. In: ICPM. IEEE (2019)

20. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic
conformance checking. In: BPM Forum. LNBIP, vol. 360, pp. 127–143. Springer
(2019)

21. Leemans, S.J., Li, T., van Detten, J.N.: Ebi - a stochastic process mining framework.
In: ICPM Doctoral Consortium and Demo Track. CEUR Workshop Proceedings,
vol. to appear. CEUR-WS.org (2024)

22. de Leoni, M.M., Mannhardt, F.: Road traffic fine management process (2015)
23. Polyvyanyy, A., Moffat, A., García-Bañuelos, L.: An entropic relevance measure for

stochastic conformance checking in process mining. In: ICPM. pp. 97–104. IEEE
(2020)

24. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri nets
with arbitrary delay distributions from event logs. In: BPM Workshops. LNBIP,
vol. 171, pp. 15–27. Springer (2013)

25. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite-state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7),
1013–1025 (2005)


	The Jensen-Shannon Distance Metric for Stochastic Conformance Checking

