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Abstract A fundamental task in conformance checking is to compute
optimal alignments between a given event log and a process model. In
general, it is known that this unavoidably incurs high computational
costs which, in turn, leads to poor scalability in practice. One angle to
attack the complexity is to develop alignment algorithms that exploit
particular syntactic restrictions of the underlying process models. In this
article, we study alignments for process trees with unique labels. These
models are the output of the Inductive Miner, a family of state-of-the-
art process discovery algorithms also used by the leading process mining
tools. Our main contribution is a novel algorithm that constructs op-
timal alignments for process trees with unique labels efficiently, i.e., in
polynomial time. This is in contrast with general process trees where the
problem is NP-complete and general workflow nets where the problem
is PSPACE-complete. We give a proof-of-concept implementation of our
algorithm in PM4Py and evaluate it on a collection of real-life event logs.

Keywords: Process Mining · Conformance Checking · Alignments · Pro-
cess Trees · Dynamic Programming

1 Introduction

Constructing optimal alignments between a trace and a process model is a
key task in conformance checking. Unfortunately, the algorithmic complexity
of alignments is a major bottleneck in practice. It can be shown that com-
puting optimal alignments on sound workflow nets is PSPACE-complete. One
approach to overcome the intractability is to consider (syntactic) restrictions on
the process models and to make use of the additional structure to speed up the
alignment computation. Along these lines, we recently showed that computing
optimal alignments on process trees is in NP and we gave a novel Mixed Integer
Linear Programming (MILP) formulation which outperforms the state-of-the-art
alignment algorithms in PM4Py [18]. In this work, we reconsider process trees,
but with the further restriction that each activity label occurs at most once in
the process tree (i.e., process trees with unique labels).
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In many real-life scenarios, process models have a tree-like structure, meaning
that the full process decomposes into subprocesses that are interconnected in
a tree-like fashion. In process mining, this kind of process models has been
formalized as the concept of process trees. Process trees have gained quite some
popularity in the process mining community, most importantly, since they form
the basis for a widely used family of mining algorithms, the so-called Inductive
Miner [14]. It is fair to say that process trees provide a good trade-off between
expressiveness and computational efficiency.

But there is more to the story: the structure of process trees that come out
of the Inductive Miner have unique activity labels, meaning that each activity
label occurs at most once in the process tree. This clearly is a strong restriction,
but it really is this assumption which makes the Inductive Miner tractable in
practice. For us, it was reason enough to reconsider the alignment problem on
process trees and ask if it is possible to exploit the unique label property to speed
up the alignment computations even further, in particular: can alignments on
process trees with unique labels be computed in polynomial time?

In this paper, we answer this question affirmatively. We give a new efficient
(polynomial-time) dynamic programming algorithm to compute optimal align-
ments between a trace and a process tree with unique labels. This places the
alignment problem for process trees with unique labels in P. Our key observa-
tion is that the unique label property allows us to handle the parallel operator in
an efficient manner. The parallel operator models independent parallel compu-
tation and corresponds to a parallel gateway in BPMN or to the shuffle operator
in formal languages. In fact, without the restriction to unique labels, the parallel
operator requires the exploration of an exponential number of possible align-
ments which brings us to the realm of NP for general process trees. Besides the
parallel operator, we further make use of the unique label property to speed-up
computations of the sequence operator. We show how we can restrict the set
of possible splits of a trace with respect to an optimal alignment. This saves
a high number of recursive calls in the dynamic programming algorithm. We
implemented our new algorithmic approach in form of a proof-of-concept based
on the PM4Py ecosystem [4] and also evaluated it on a set of real-life bench-
mark logs. Our experiments show that the dynamic programming algorithm is
competitive with the state-of-the-art alignment algorithms in PM4Py and even
outperforms them in some cases. This underlines our belief that the structure of
process models should be better taken into account when solving the alignment
problem in practice.

2 Related Work

Alignments [3] are the state-of-the-art technique for conformance checking [7].
Besides the (textbook) algorithm based on A∗, several algorithmic approaches
have been explored to compute alignments, e.g., see [5, 10, 15] for a technique
based on Linear Programming (LP) to improve the A∗-heuristics, or [19] for
an approximative scheme based on Mixed Integer Linear Programming (MILP).
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Other approaches use decomposition techniques to tackle large process model
instances, see, e.g., [1].

Process trees were first applied by [2, 6] in the context of genetic process
discovery. Since then, process trees have proven to be a modeling language with
a great balance between expressiveness and algorithmic simplicity. In particular,
they form the basis of one of the most popular process discovery algorithms,
the so-called Inductive Miner [12–14]. Thus, optimized algorithms for alignment
computations on process trees have been studied. Most notably, [17] proposed an
approximation algorithm which performs well on many process trees, but which
does not guarantee optimality in all cases. We also like to point to our own
upcoming work where we give a MILP-formulation for the alignment problem
on process trees [18].

Finally, alignments for process trees have been studied much earlier in the
context of the error correction problem for regular languages with shuffle oper-
ator, see, e.g., [16] (under a different term). Our new algorithmic approach can
be transferred into this field as well where, by the best of our knowledge, the
unique label property has not been studied before.

3 Preliminaries

Let N (N0) be the set of natural numbers excluding 0 (including 0). For any
tuple a, πi(a) denotes the projection on its ith element, i.e., πi : A1×· · ·×An →
Ai, (a1, . . . , an) 7→ ai.

Definition 1 (Alphabet). An alphabet Σ is a finite, non-empty set of labels
(also referred to as activities).

Definition 2 (Sequence). Sequences with index set I over a set A are denoted
by σ = ⟨ai⟩i∈I ∈ AI . The length of a sequence σ is written as |σ| and the set of
all finite sequences over A is denoted by A∗. For a sequence σ = ⟨ai⟩i∈I ∈ AI ,∑
σ is a shorthand for

∑
i∈I ai. The restriction of a sequence σ ∈ A∗ to a set

B ⊆ A is the subsequence σ|B of σ consisting of all elements in B. A function
f : A → B can be applied to a sequence σ ∈ A∗ given the recursive definition
f(⟨⟩) := ⟨⟩ and f(⟨a⟩ · σ) := ⟨f(a)⟩ · f(σ). For a sequence of tuples σ ∈ (An)∗,
π∗
i (σ) denotes the sequence of every ith element of its tuples, i.e., π∗

i (⟨⟩) := ⟨⟩ and
π∗
i (⟨(a1, . . . , an)⟩ · σ) := ⟨πi(a1, . . . , an)⟩ · π∗

i (σ) = ⟨ai⟩ · π∗
i (σ). As an important

extension of π∗
i we write πB

i for the composition of π∗
i with the restriction to B,

i.e. πB
i := π∗

i |B .

We identify languages of traces L ⊆ Σ∗ with sets of (observed) behavior of
a (business) process. Each trace corresponds to a single process execution (also
known as a case). The symbols in the trace correspond to the events or activities
that occurred. In this article, we study process trees as a modeling mechanism
for business processes. Each process tree T defines a language L(T ) ⊆ Σ∗ of
possible process behaviors. Before we give the definition, we recall a central
operator which captures independent parallel computations.
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Definition 3 (Shuffle �). For x, y ∈ Σ∗, the shuffle x� y of x and y is

x� y := {v1w1 . . . vkwk | x = v1 . . . vk, y = w1 . . . wk, vi, wi ∈ Σ∗, 1 ≤ i ≤ k}.

Let L1,L2 ⊆ Σ∗. The shuffle of L1 and L2 is defined as

L1 � L2 :=
⋃

{w1 � w2 | w1 ∈ L1, w2 ∈ L2}.

Definition 4 (Process Trees). Let Σ be an alphabet and let τ /∈ Σ be the silent
activity. The set of process trees (over Σ) is defined recursively:
– each activity a ∈ Σ and the silent activity τ is a process tree,
– →(T1, . . . , Tn), ×(T1, . . . , Tn), ⟲(T1, T2), and ∧(T1, . . . , Tn) are process trees

with T1, . . . , Tn, n ∈ N being process trees as well.
The symbols → (sequence), × (exclusive choice), ⟲ (loop), and ∧ (parallel) are
process tree operators. The language of a process tree T is denoted by L(T ) and
is also recursively defined where
– L(τ) = {⟨⟩} and L(a) = {⟨a⟩},
– L(→(T1, . . . , Tn)) = L(T1) · . . . · L(Tn),
– L(×(T1, . . . , Tn)) = L(T1) ∪ . . . ∪ L(Tn),
– L(⟲(T1, T2)) = L(T1) · (L(T2) · L(T1))∗, and
– L(∧(T1, . . . , Tn)) = L(T1)� . . .� L(Tn).

In order to simplify notation in this article, from now on, we consider the
process tree operators {→,×,⟲,∧} in their binary form only. This also allows
us to use infix notation, e.g., T1 →T2 instead of →(T1, T2). This is no restriction,
since the general n-ary version can easily be rewritten in form of binary oper-
ators (all operators are associative). For a process tree T , let Letters(T ) ⊆ Σ
denote the set of all labels occurring in T . Inductively, Letters(T ) is defined as:
Letters(τ) = ∅, Letters(a) = {a} for a ∈ Σ, and for all binary operators we have

Letters(T1 →T2) = Letters(T1 ×T2) = Letters(T1 ∧T2) =
Letters(T1 ⟲T2) = Letters(T1) ∪ Letters(T2).

A process tree T has unique labels if for all binary operators op ∈ {→,×,∧,⟲}
and all subtrees (T1 op T2) that occur in T we have Letters(T1)∩Letters(T2) = ∅.

Definition 5 (Moves, Alignments). Let Σ be an alphabet and let ≫ be a fresh
symbol not in Σ. We use ≫ to indicate a skip in the trace or model and define
Σ≫ := Σ ∪ {≫} as the alphabet extended by the skip-symbol ≫. We define
Moves(Σ) ⊆ Σ≫ ×Σ≫ as the set of all moves over Σ given by

Moves(Σ) := {(a, a) | a ∈ Σ} synchronous moves
∪ {(a,≫) | a ∈ Σ} model moves
∪ {(≫, a) | a ∈ Σ} log moves.

An alignment γ ∈ Moves(Σ)∗ between w ∈ Σ∗ and a process tree T is a
sequence of moves γ = ⟨m1, . . . ,mn⟩ such that πΣ

1 (γ) = w and πΣ
2 (γ) ∈ L(T ).
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Thus, we obtain an alignment γ, if the first component of each move in γ is
the trace w (when we remove all skip symbols ≫) and the second component
yields a trace in the language of the process tree T (again without skip symbols).
Intuitively, with an alignment we modify the trace w (the first component) such
that it becomes a trace in the language of the process tree T (the second com-
ponent). In this regard, a log move (a,≫) deletes the symbol a from the trace
w while a model move (≫, b) inserts the symbol b into the trace w.

We determine the costs c(γ) of an alignment γ by summing up the costs
c(m) of the individual moves m in γ where synchronous moves have cost 0 and,
with respect the standard cost function, log and model moves have cost 1 (other
cost functions are possible). The set of all alignments between a trace w and a
process tree T is denoted by Γ (w, T ). An optimal alignment γ∗ ∈ Γ (w, T ) is an
alignment with minimal costs c(γ∗) among all alignments in Γ (w, T ).

4 Structure of Process Tree Alignments

Process trees have an inductive definition which lends itself to recursive algo-
rithms. We next show that this inductive structure carries over to the set of
alignments as well.

For a trace w ∈ Σ∗ of length n, w = ⟨w1, w2, . . . , wn⟩, we call a mapping
φ : {1, . . . , n} → {1, 2} a factorization of w. For a factorization φ of w we define
φ1 ∈ Σ∗ as the trace that results by concatenating all symbols wi with φ(i) = 1.
Likewise, φ2 ∈ Σ∗ denotes the trace that results by concatenating all symbols
wi with φ(i) = 2. For the special case where n = 0, we only have a single
factorization φ = ∅ with φ1 = φ2 = ⟨⟩. We write Φ(w) to denote the set of all
factorizations of w. Note the connection between factorizations and the shuffle
operator: for w,w1, w2 ∈ Σ∗ we have w ∈ w1 � w2 if and only if there exists
a factorization φ of w such that φ1 = w1 and φ2 = w2. In this sense, the
factorization can be seen as a kind of inverse of the shuffle operator.

Theorem 1 (Structure of Alignments over Process Trees). Let T1 and T2 be
process trees and w ∈ Σ∗ be a trace. Then the following holds.

Γ (w, T1 →T2) =
⋃

w1·w2=w

Γ (w1, T1) · Γ (w2, T2) (1)

Γ (w, T1 ×T2) = Γ (w, T1) ∪ Γ (w, T2) (2)

Γ (w, T1 ∧T2) =
⋃

φ∈Φ(w)

{
γ ∈ Γ (φ1, T1)� Γ (φ2, T2)

∣∣ πΣ
1 (γ) = w

}
(3)

Γ (w, T1 ⟲T2) =
⋃

k∈N0

{Γ (w0, T1) · Γ (y1, T2) · Γ (z1, T1) · · ·Γ (yk, T2) · Γ (zk, T1) |
w = w0y1z1 . . . ykzk, w0, yi, zi ∈ Σ∗, 1 ≤ i ≤ k} (4)

Proof. Ad (1): Let T = T1 →T2 and w ∈ Σ∗ be a trace. We show that Γ (w, T ) =⋃
w1·w2=w Γ (w1, T1) ·Γ (w2, T2). The direction ⊇ is obvious, so let’s focus on the

direction ⊆. Let γ ∈ Γ (w, T ). Since T = T1 →T2, we find y1 ∈ L(T1) and
y2 ∈ L(T2) such that πΣ

2 (γ) = y1 · y2. Hence, we can write γ = γ1 · γ2 with
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πΣ
2 (γ1) = y1 and πΣ

2 (γ2) = y2. Define w1 = πΣ
1 (γ1) and w2 = πΣ

1 (γ2). Then we
have w = w1 · w2 and γ1 ∈ Γ (w1, T1) and γ2 ∈ Γ (w2, T2).
Ad (2): Straightforward.
Ad (3): For ⊇, observe that for a projection operator π and sequences x, y we
have π(x�y) = π(x)�π(y). For the direction ⊆, let γ ∈ Γ (w, T ). Let y = πΣ

2 (γ).
Since T = T1 ∧T2, we find a factorization φ of y such that y1 := φ1 ∈ L(T1)
and y2 := φ2 ∈ L(T2). We lift this factorization to a factorization of γ by
assigning to each log move m in γ the value 2 (the choice of 2 is arbitrary and we
could have chosen 1 as well). Call the resulting factorization ψ and let γ1 = ψ1

and γ2 = ψ2. Let w1 = πΣ
1 (γ1) and w2 = πΣ

1 (γ2). Then, w ∈ w1 � w2 since
w = πΣ

1 (γ). Moreover, γ1 ∈ Γ (w1, T1) and γ2 ∈ Γ (w2, T2) since πΣ
2 (γ1) = y1 and

πΣ
2 (γ2) = y2 (we have only assigned new log moves to the second component of

the alignment). This concludes the argument for the parallel operator.
Ad (4): We can get a decomposition analogously as for the sequence operator (1)
using the semantics of the loop operator T1 ⟲T2 as L(T1) · (L(T2) · L(T1))∗.

From Theorem 1 we can derive a recursive algorithm for computing an opti-
mal alignment between a trace w and a process tree T . Let Cost(w, T ) denote
the minimal costs of an alignment in Γ (w, T ), i.e.,

Cost(w, T ) = min{c(γ) | γ ∈ Γ (w, T )}.

Then, we have the following recursive procedure for computing Cost(w, T ).

Theorem 2 (Recursive Computation of Alignment Costs). Let T1 and T2 be
process trees and w ∈ Σ∗ a trace. Then the following holds.

Cost(w, T1 →T2) = min
w1·w2=w

{Cost(w1, T1) + Cost(w2, T2)}

Cost(w, T1 ×T2) = min{Cost(w, T1),Cost(w, T2)}
Cost(w, T1 ∧T2) = min

φ∈Φ(w)
{Cost(φ1, T1) + Cost(φ2, T2)}

Cost(w, T1 ⟲T2) = min
k∈N0

{
Cost(w0, T1) +

k∑
i=1

Cost(yi, T2) + Cost(zi, T1)

∣∣∣∣∣
w = w0y1z1 . . . ykzk, w0, yi, zi ∈ Σ∗, 1 ≤ i ≤ k

}
Proof. This follows immediately from Theorem 1. Note that for the case of the
parallel operator (3) we have dropped the condition πΣ

1 (γ) = w. This can be
justified as follows. If φ ∈ Φ(w) and γ ∈ γ1 � γ2 with γ1 ∈ Γ (φ1, T1) and γ2 ∈
Γ (φ2, T2), then the costs of all alignments in γ1� γ2 are the same (they consist
of the same moves) and at least for one γ ∈ γ1 � γ2 we have πΣ

1 (γ) = w.

The missing base cases for Cost(w, T ) can be determined easily.

Theorem 3 (Alignment Costs for Base Cases). Let w ∈ Σ∗ be a trace and
a ∈ Σ. Then Cost(w, τ) = |w|. Moreover, Cost(w, a) = |w| + 1 if a does not
occur in w and Cost(w, a) = |w| − 1 otherwise.
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5 A Dynamic Programming Algorithm

The recursive computation of the optimal alignment costs Cost(w, T ) can be
turned into a dynamic programming algorithm. We use the formulae from Sec-
tion 4 and avoid recomputation for identical subproblems by storing the results
of Cost(w, T ) in a table which we denote by CostTable, see Algorithm 1.

Algorithm 1 Dynamic Programming Algorithm to Compute Cost(w, T )

CostTable := ∅
function cost(w, T )

if (w, T ) ∈ CostTable then return CostTable(w, T )

if T = a then cost← |w| − 1 if a occurs in w, else cost← |w|+ 1
else if T = τ then cost← |w|
else if T = T1→T2 then

for all w1 · w2 = w do
cost← min{cost,cost(w1, T1) + cost(w2, T2)}

else if T = T1×T2 then cost← min{cost(w, T1),cost(w, T2)}
else if T = T1 ∧T2 then

for all φ ∈ Φ(w) do
cost← min{cost,cost(φ1, T1) + cost(φ2, T2)} (see improvements below)

else if T = T1 ⟲T2 then
for all w0y1z1 . . . ykzk = w with w0, yi, zi ∈ Σ∗, 1 ≤ i ≤ k, k ∈ N0 do

cost ← min{cost,cost(w0, T1) + cost(y1, T2) + cost(z1, T1) + · · · +
cost(yk, T2) + cost(zk, T1)} (see improvements below)

CostTable(w, T )← cost
return cost

As presented, Algorithm 1 has exponential runtime. First, the number of
recursive calls required for the loop operator T1 ⟲T2 corresponds to the (ex-
ponential) number of decompositions of w into subtraces w = w0y1z1 . . . ykzk.
However, this blowup can be avoided. Consider a graph on the positions of w,
n := |w|, with an edge from position 0 ≤ i ≤ n to position n ≥ j ≥ i with costs

min
k

{Cost(w[i, k], T2) + Cost(w[k, j], T1)}.

This are the costs of aligning the subtrace w[i, j] of w against the process tree
T2 →T1. In turn, a path from i to n := |w| corresponds to a partition of the suffix
w[i, n] of w into segments (each edge yields one segment) where each segment
is aligned against T2 →T1. Specifically, the costs of a cost-minimal path from i
to n are the costs of an optimal alignment of w[i, n] against (L(T2) · L(T1))∗.
Hence, these costs can be determined efficiently with a shortest-path algorithm.
This yields polynomial runtime for the loop operator.

The second problematic case is the parallel operator T1 ∧T2. Here, we have
to consider all factorizations of the trace w into two subtraces w1 and w2 which



8 C. T. Schwanen et al.

is an exponential number (in the length of w). In contrast to the loop operator,
this exponential search cannot be avoided in general (unless P = NP). However,
for process trees with unique labels, the situation is different.

Process Trees with Unique Labels. Let us reconsider the case T = T1 ∧T2 where

Cost(w, T ) = min
φ∈Φ(w)

{Cost(φ1, T1) + Cost(φ2, T2)},

from Theorem 2 for process trees with unique labels. Let L1 = Letters(T1) and
L2 = Letters(T2) be the sets of labels occurring in T1 and T2, respectively. We
claim that we can restrict the set of factorizations to a singleton. Indeed, each
letter wi of w either belongs to L1 or L2 (or to none of them). For example, if
wi = a, and we know that a ∈ L1, then it cannot reduce the alignment costs if we
assign a to T2. In fact, in T2 we have to delete a anyway (log move (a,≫)) and
we could do exactly the same in T1 (without increasing costs). In other words,
without loss of generality we can assume that φ(i) = 1. We can argue analogously
for letters in L2. If the letter a at position i does neither belong to L1 nor to L2,
then we can assign it to T1 or T2 without changing the alignment costs (in both
cases, a deletion move (a,≫) is unavoidable). Arbitrarily, we assign such letters
to T2. In conclusion, for the single factorization φ∗ with φ∗(i) = 1 if wi ∈ L1

and φ∗(i) = 2 otherwise, we have:

Cost(w, T ) = Cost(φ∗
1, T1) + Cost(φ∗

2, T2).

With these adaptations, Algorithm 1 becomes polynomial-time. To see this,
let w be the input trace, and let T denote the input tree. Let n = |w|. A
first observation is that the total number of entries in CostTable is bounded by
O(|T | · n2). This is because each entry (v, T ′) in CostTable is determined by T ′

together with a segment w[i, j], 1 ≤ i ≤ j ≤ n, of the original input trace w
(indeed, v either is the segment w[i, j] itself or the restriction of w[i, j] to letters
that occur in T ′). This is in contrast to the case of process trees with non-
unique labels where the shuffle operator would produce an exponential number
of recursive calls for its subtrees (and the corresponding traces v could not easily
be described as segements of the original input trace). With the same argument,
O(|T |·n2) is a bound on the number of recursive calls of the function Cost(w, T ).

Secondly, we bound the runtime for each call of Cost(w, T ) (besides the
recursive calls). By going through the different cases, it can be seen that the most
expensive step is the shortest path computation for the loop operator. Here, we
compute a cost-minimal path on a graph with O(|v|) nodes. Since |v| ≤ n, and
since shortest paths can be computed in quadratic time in the number of vertices
(e.g. by using Disjkstra), the total runtime for a call of Cost(w, T ) is bounded
by O(n2) (not considering the runtime for the sparked recursive calls, of course).
Altogether this yields a runtime bound of O(|T | · n4).

Theorem 4 (Dynamic Programming Algorithm for Process Trees with Unique
Labels). The costs Cost(w, T ) of an optimal alignment between a process tree T
with unique labels and a trace w can be computed efficiently in time O(|T | · |w|4).
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6 Evaluation

We implemented our novel alignment algorithm in Python and compared its
runtime against the available algorithms in [4] on a set of real-life event logs. We
like to discuss one further algorithmic idea which lead to a significant speed-up
on the benchmarks. Consider the sequence operator T1 →T2 and recall that

Cost(w, T ) = min
w1·w2=w

{Cost(w1, T1) + Cost(w2, T2)}.

Implemented naively, we need to check n splits of w into subtraces w1 and w2

where n = |w|. Let L = Letters(T1) and R = Letters(T2) be the sets of labels
occurring in the (left) subtree T1 and the (right) subtree T2, respectively. Because
of the unique label property, L ∩ R = ∅. Let us label the letters in w with L if
they belong to L and with R if they belong to R. Call the resulting {L,R}-trace
decomp(w). Of course, w could contain letters that neither belong to L nor to R.
Such letters a can be removed in a preprocessing step (they incur deletion costs
anyway). Hence, we can assume that decomp(w) and w have the same length.
We claim that it is sufficient to check only the following split positions of the
trace w: seg = {1, n} ∪ {i : decomp(w)i = L and decomp(w)i+1 = R}.

To see why, let i ∈ seg be a position with a flip from L- to R-labels. Then,
by definition, this position is followed by R-labels. The alignment costs can only
increase for a split within the upcoming R-segment. This is because to handle
R-labels in the left subtree T1 we need to delete them. Moreover, if the R-part
is followed by an L-segment, then it makes sense to include as many L-labels
for the next split as possible (since L-labels will necessarily incur deletion costs
in the right subtree T2). Hence, the next optimal split can only be after the last
L-label (either at the end of the trace or right before the next R-label).

We compared our algorithm (Dynamic) against the standard (A*-based) al-
gorithm for computing alignments in PM4Py (Standard) and an approximation
algorithm in PM4Py tailored for process trees (Approx ). For each algorithm and
trace variant, we took the best out of 10 repetitions (meaning the minimum
required time for computing the costs of an optimal alignment). To visualize the
results, we computed the performance factors for each trace variant, that is, we
took the best runtime and divided the runtime of all three algorithms by this
optimal runtime (trace-variant-wise). For instance, a performance factor of 2 in-
dicates, that the algorithm took twice as long as the best algorithm for the given
trace. We set a timeout of 65 seconds (instead of say 60 seconds) to compensate
for overhead and to give each algorithm the safe chance to finish its computation
in one minute. If a computation hits the timeout in one of the repetitions, the al-
gorithm is considered to have failed on the trace/model pair. In the chart below,
we plotted the empirical CDF of the performance factors for each of the three
algorithms. The frequencies of performance factors of some algorithms do not
sum up to 1; this indicates, that the algorithms ran into timeouts on a certain
fraction of instances.

Log data and results. The general picture is that our algorithm (Dynamic) is
very close to the approximation algorithm (Approx ) and, in almost all cases,
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clearly outperforms the standard algorithm (Standard). Let us start with the
BPI Challenge 2019 event log [11]. We used the Inductive Miner [14] to discover
process trees with different noise thresholds (0%, 10%, 25% and 50%) and
aligned the log against the resulting process trees. The CDF of the performance
factors is depicted in Figure 1. Due to lack of space, we just briefly describe
further findings. On the BPI Challenge 2017 event log [9], our algorithm is
slightly superior to Approx for noise thresholds of 10 % and 50 %, while it is
slightly below the performance of Approx for thresholds of 0 % and 25%. On the
BPI Challenge 2012 event log [8], our algorithm is slightly superior to Approx
for noise thresholds of 0 % and 10%, while it is slightly below the performance
of Approx for thresholds of 25 % and 50 %. This is with respect to the CDF of
performance factors. To also give some numerical results, Table 1 depicts the
median computation times of the three algorithms for the runs on BPI 2012 and
BPI 2017 with respect to the different noise thresholds (0%, 10%, 25%, 50 %).

Table 1: Median computation times (in seconds) for BPI 2012 and BPI 2017

BPI 2012 BPI 2017

Threshold 50% 25% 10% 0% 50% 25% 10% 0%

Dynamic 5.69 5.24 4.86 4.91 4.92 8.24 4.88 6.00
Approx 5.68 5.25 5.48 5.51 5.37 6.18 5.29 5.91

Standard 21.40 22.49 7.91 8.48 17.44 40.07 9.87 37.56

7 Conclusion

We proved that the alignment problem for process trees with unique labels can
be solved in polynomial time using dynamic programming. A proof-of-concept
implementation in Python demonstrates that our algorithm is competitive with
(and in some cases outperforms) the existing techniques of the PM4Py library.
We discussed ideas how the algorithm can be further optimized in practice.

This article is part of a broader research agenda where we try to understand
better the structure and algorithmic complexity of the alignment problem. We
saw an interesting, and practically relevant, class of process models, where the
alignment problem can be solved in polynomial time. This is rather the excep-
tion than the rule, since the alignment problem has high complexity in general
(PSPACE-hard for sound workflow nets). Our work leads to many questions for
future research. For example, it would be interesting to study relaxations of
the unique label property and study the influence of these parameters on the
complexity. Also, it would be interesting to see how restrictive the unique label
property really is. Can we get a characterization of the event logs that can be
defined using process trees with unique labels? And, as sound workflow nets with
unique labels are more powerful than process trees with unique labels (in terms
of modeling power), what is the complexity of the alignment problem for sound
workflow nets with unique labels?
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Figure 1: CDF of the performance factors of Dynamic, Approx, Standard in PM4Py
on the BPI Challenge 2019 event log with different noise levels.
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